Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Ultrason Sonochem ; 92: 106241, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36470127

ABSTRACT

Under ultrasonication, cuprous oxide (Cu2O) microparticles (<5 µm) were fragmented into nanoparticles (NPs, ranging from 10 to 30 nm in diameter), and interacted strongly with alkali lignin (Mw = 10 kDa) to form a nanocomposite. The ultrasonic wave generates strong binding interaction between lignin and Cu2O. The L-Cu nanocomposite exhibited synergistic effects with enhanced antibiofilm activities against E. coli, multidrug-resistant (MDR) E. coli, S. aureus (SA), methicillin-resistant SA, and P. aeruginosa (PA). The lignin-Cu2O (L-Cu) nanocomposite also imparted notable eradication of such bacterial biofilms. Experimental evidence unraveled the destruction of bacterial cell walls by L-Cu, which interacted strongly with the bacterial membrane. After exposure to L-Cu, the bacterial cells lost the integrated structural morphology. The estimated MIC for biofilm inhibition for the five tested pathogens was 1 mg/mL L-Cu (92 % lignin and 8 % Cu2ONPs, w/w %). The MIC for bacterial eradication was noticeably lower; 0.3 mg/mL (87 % lignin + 13 % Cu2ONPs, w/w %) for PA and SA, whereas this value was appreciably higher for MDR E. coli (0.56 mg/mL, 86 % lignin and 14 % Cu2O NPs). Such results highlighted the potential of L-Cu as an alternative to neutralize MDR pathogens.


Subject(s)
Anti-Bacterial Agents , Nanocomposites , Anti-Bacterial Agents/chemistry , Staphylococcus aureus , Lignin/pharmacology , Escherichia coli , Ultrasonics , Bacteria , Biofilms , Nanocomposites/chemistry , Microbial Sensitivity Tests
2.
ACS Appl Bio Mater ; 5(12): 5790-5799, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36459428

ABSTRACT

Carbon dots (CDs) were simply prepared from charcoal by hydrothermal processing at 180 °C for 15 h without any chemicals. The as-prepared CDs with an average diameter of 5 ± 6 nm exhibited a predominant absorption peak at 290 nm, corresponding to the n to π* transition of the oxygen functional groups (C═O) and the free amine functional groups (-NH2). The resulting CDs were then incorporated into cotton and polyester by facile ultrasonication for 1 h. The obtained CD-coated fabrics were first evaluated for their UV-blocking capability and then for their antibacterial properties against two model pathogens: Gram-negative E. coli and Gram-positive S. aureus. Both cotton and polyester showed no UV protection at 280 or 380 nm; conversely, cotton or polyester decorated with CDs exhibited a UV blocking ratio of 82-98%. The CD-coated fabrics showed 100% antibacterial activities against E. coli and S. aureus, whereas the pristine fabrics showed no effect. The CDs/fabrics could adsorb Hg2+ and Fe3+, resulting in a drastic fluorescence quenching. As such, this distinct feature was exploited for the removal and detection of these two ions with the limits of detection of 55and 72 µM, respectively.


Subject(s)
Carbon , Metals, Heavy , Carbon/chemistry , Staphylococcus aureus , Escherichia coli , Biomass , Anti-Bacterial Agents/pharmacology , Polyesters/chemistry , Metals, Heavy/pharmacology
3.
ACS Appl Bio Mater ; 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35952666

ABSTRACT

Considering the global spread of bacterial infections, the development of anti-biofilm surfaces with high antimicrobial activities is highly desired. This work unraveled a simple, sonochemical method for coating Cu2O nanoparticles (NPs) on three different flexible substrates: polyester (PE), nylon 2 (N2), and polyethylene (PEL). The introduction of Cu2O NPs on these substrates enhanced their surface hydrophobicity, induced ROS generation, and completely inhibited the growth of sensitive (Escherichia coli and Staphyloccocus aureus) and drug-resistant (MDR E. coli and MRSA) planktonic and biofilm. The experimental results confirmed that Cu2O-PE exhibited complete biofilm mass reduction ability for all four strains, whereas Cu2O-N2 showed more than 99% biomass inhibition against both drug-resistant and sensitive pathogens in 6 h. Moreover, Cu2O-PEL also indicated a 99.95, 97.73, 98.00, and 99.20% biomass reduction of MRSA, MDR E. coli, E. coli, and S. aureus, respectively. All substrates were investigated for time-dependent inhibitions, and the associated biofilm mass and log reduction were evaluated. The mechanisms of Cu2O NP action against the mature biofilms include the generation of reactive oxygen species (ROS) as well as electrostatic interaction between Cu2O NPs and bacterial membranes. The current study could pave the way for the commercialization of sonochemically coated Cu2O NP flexible substrates for the prevention of microbial contamination in hospitals and industrial environments.

4.
Nanomaterials (Basel) ; 12(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35683684

ABSTRACT

The growth of industrialization and the population has increased the usage of fossil fuels, resulting in the emission of large amounts of CO2. This serious environmental issue can be abated by using sustainable and environmentally friendly materials with promising novel and superior performance as an alternative to petroleum-based plastics. Emerging nanomaterials derived from abundant natural resources have received considerable attention as candidates to replace petroleum-based synthetic polymers. As renewable materials from biomass, cellulose nanocrystals (CNCs) nanomaterials exhibit unique physicochemical properties, low cost, biocompatibility and biodegradability. Among a plethora of applications, CNCs have become proven nanomaterials for energy applications encompassing energy storage devices and supercapacitors. This review highlights the recent research contribution on novel CNC-conductive materials and CNCs-based nanocomposites, focusing on their synthesis, surface functionalization and potential applications as supercapacitors (SCs). The synthesis of CNCs encompasses various pretreatment steps including acid hydrolysis, mechanical exfoliation and enzymatic and combination processes from renewable carbon sources. For the widespread applications of CNCs, their derivatives such as carboxylated CNCs, aldehyde-CNCs, hydride-CNCs and sulfonated CNC-based materials are more pertinent. The potential applications of CNCs-conductive hybrid composites as SCs, critical technical issues and the future feasibility of this endeavor are highlighted. Discussion is also extended to the transformation of renewable and low-attractive CNCs to conductive nanocomposites using green approaches. This review also addresses the key scientific achievements and industrial uses of nanoscale materials and composites for energy conversion and storage applications.

5.
Biotechnol Adv ; 53: 107843, 2021 12.
Article in English | MEDLINE | ID: mdl-34624454

ABSTRACT

Carbon dots (CDs) and their doped counterparts including nitrogen-doped CDs (N@CDs) have been synthesized by bottom-up or top-down approaches from different precursors. The attractiveness of such emerging 2D­carbon-based nanosized materials is attributed to their excellent biocompatibility, preparation, aqueous dispersibility, and functionality. The antimicrobial, optical, and electrochemical properties of CDs have been advocated for two important biotechnological applications: bacterial eradication and sensing/biosensing. CDs as well as N@CDs act as antimicrobial agents as their surfaces encompass functional hydroxyl, carboxyl, and amino groups that generate free radicals. As a new class of photoluminescent nanomaterials, CDs can be employed in diversified analytics. CDs with surface carboxyl or amino groups form nanocomposites with nanomaterials or be conjugated with biorecognition molecules toward the development of sensors/biosensors. The deployment of conductive CDs in electrochemical sensing has also increased significantly because of their quantum size, excellent biocompatibility, enzyme-mimicking activity, and high surface area. The review also addresses the ongoing challenges and promises of CDs in pathogenesis and analytics. Perspectives on the future possibilities include the use of CDs in microbial viability assay, wound healing, antiviral therapy, and medical devices.


Subject(s)
Biosensing Techniques , Nanostructures , Quantum Dots , Carbon , Nitrogen
6.
Ultrason Sonochem ; 78: 105746, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34507263

ABSTRACT

Polypyrrole (PPY) spherical particles synthesized using carbon dots as an efficient catalyst were strongly embedded on fluorinated nonwoven fabric by ultrasonication to form a membrane with high hydrophilicity. An optimal amount of PPY adhered to the membrane after 30 min of sonication enhanced the overall membrane area with high hydrophilicity. Oil with high hydrophobicity was repelled by the resulting membrane, whereas water was freely penetrated and diffused from the membrane. The membrane exhibited good reusability and efficiency for the recovery of oil from a cooking oil-water mixture within 30 s. The incorporation of PPY in the fluorinated fabric imparts significant antibacterial properties against two common pathogens, Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The anti-biofouling membrane could pave the way for its potential application to separate spilled oil from contaminated waters, comprising different microorganisms and living species. The novelty of this manuscript is described in a new system, the fabrication of PPY membranes with two important properties: biocidal and oil/water separation.


Subject(s)
Ultrasonics , Anti-Infective Agents/pharmacology , Escherichia coli , Polymers , Pyrroles
7.
Nanomaterials (Basel) ; 11(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925378

ABSTRACT

Nitrogen-doped carbon nanodots (N@CDs) were prepared by hydrothermal processing of bovine serum albumin (Mw: 69,324 with 607 amino acids). A polyaniline (PANI-N@CDs) nanocomposite was then synthesized by ultrasonication and used to degrade Congo red (CR), methylene blue (MB), Rhodamine B (RhB), and crystal violet (CV) four common organic dyes. The PANI-N@CD nanocomposite simultaneously adsorbed and concentrated the dye from the bulk solution and degraded the adsorbed dye, resulting in a high rate of dye degradation. The combination of holes (h+), hydroxyl (OH•), and O2•- was involved in the N@CD-mediated photocatalytic degradation of the dyes. Under visible light illumination at neutral pH, the PANI-N@CDs were proven as an efficient adsorbent and photocatalyst for the complete degradation of CR within 20 min. MB and RhB were also degraded but required longer treatment times. These findings supported the design of remediation processes for such dyes and predicted their fate in the environment. The nanocomposite also exhibited antimicrobial activities against Gram-negative bacterium E. coli and Gram-positive bacterium S. aureus.

8.
Nanomaterials (Basel) ; 11(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540607

ABSTRACT

Carbon dots (CDs) were obtained from medicinal turmeric leaves (Curcuma longa) by a facile one-step hydrothermal method and evaluated for their bactericidal activities against two gram-negative; Escherichia coli, Klebsiella pneumoniae, and two gram-positive counterparts; Staphylococcus aureus, S. epidermidis. The CDs exhibited spherical shapes with a mean size of 2.6 nm. The fluorescence spectra of CDs revealed intense fluorescence at λex/em = 362/429 nm with a bright blue color in an aqueous solution. The CDs showed strong photostability under various environmental conditions (pH, salt, and UV-radiation). The complete bactericidal potency of CDs was 0.25 mg/mL for E.coli and S. aureus after 8 h of exposure, while for K. pneumoniae, and S. epidermidis, the CDs at 0.5 mg/mL good antibacterial effect within 8 h and complete eradication after 24 h of exposure is observed. The release of reactive oxygen species played a crucial role in the death of the bacterial cell. The present study provides a strategy for the preparation of CDs from a medicinal plant and their potential antibacterial activities against four common contagious pathogens.

9.
J Funct Biomater ; 11(3)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32824954

ABSTRACT

CuO, TiO2, or SiO2 was decorated on polyaniline (PANI) by a sonochemical method, and their antimicrobial properties were investigated for two common Gram-negative pathogens: Pseudomonas aeruginosa (PA) and Klebsiella pneumoniae (KP). Without PANI, CuO, TiO2, or SiO2 with a concentration of 220 µg/mL exhibited no antimicrobial activities. In contrast, PANI-CuO and PANI-TiO2 (1 mg/mL, each) completely suppressed the PA growth after 6 h of exposure, compared to 12 h for the PANI-SiO2 at the same concentration. The damage caused by PANI-SiO2 to KP was less effective, compared to that of PANI-TiO2 with the eradication time of 12 h versus 6 h, respectively. This bacterium was not affected by PANI-CuO. All the composites bind tightly to the negative groups of bacteria cell walls to compromise their regular activities, leading to the damage of the cell wall envelope and eventual cell lysis.

10.
Polymers (Basel) ; 12(6)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512800

ABSTRACT

Polyaniline (PANI) and polypyrrole (PPY) were synthesized by carbon dots (CDs) under UV irradiation and then sonicated together with zinc acetate and copper acetate to form the PANI-Zn@CuO and PPY-Zn@Cu composites. The former consisted of agglomerated spherical particles with diameters of 1-5 µm, whereas the latter displayed irregular stick shapes with similar diameters. The bacterial potency of the composites against Escherichia coli and Staphylococcus aureus was enhanced remarkably with Zn doping in the CuO matrix, designated as Zn0.11Cu0.89O, at 0.144 mg/mL. The cell death was mainly attributed to the release of reactive oxygen species (ROS) that would severely damage DNA, proteins, and lipids. Bacteria could adhere to neutral surfaces of the composites by van der Waals attractive forces. The binding event disrupted the native surface charge of bacterial cells to induce cell lysis and result in eventual cell death.

11.
Carbohydr Polym ; 243: 116474, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32532398

ABSTRACT

Polypyrrole grafted with chitosan (PPy-g-CS) and poly (pyrrole-N-(1-naphthyl) ethylenediamine, a copolymer, (COP) have been synthesized by a one-step microwave procedure with carbon dots(C-Dots) as initiators. The electrostatic interaction between the positively charged polymers and negatively charged microbial cell membranes is widely anticipated to be responsible for cellular lysis. However, Escherichia coli exposed to PPy-g-CS (zeta potential = +46.9 mV) was completely perished after 3 h while COP (zeta potential = +64.1 mV) exhibited no antimicrobial effect. The two polymers were capable of eradicating Staphylococcus aureus, implying the charged effect is the main mechanism of cell death. The two polymers could also chelate calcium and other nutrients as well as form an external barrier to suppress the penetration of essential nutrients to support microbial survival and proliferation. In particular, pyrrole grafted chitosan was reasoned to stack onto the bacterial surface to impede the mass transfer and suppress the bacterial metabolic activity. The binding of chitosan to teichoic acids, essential acids of Gram-positive bacteria, would provoke a sequence of events and lead to bacterial death.


Subject(s)
Anti-Bacterial Agents , Chitosan/chemistry , Polymers/chemistry , Pyrroles/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
12.
Langmuir ; 36(16): 4280-4288, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32271580

ABSTRACT

Two crystalline and five amorphous benzimidazole polymers (BINP) were synthesized and conjugated to porous silica via amine and aldehyde-based materials by a simple reflux procedure. The resulting polymers were subject to thermal analysis for monitoring and quantification of the adsorption and desorption of CO2. All the polymers were capable of adsorbing CO2 from a flowing stream of only 80 mL/min at 25 °C. The adsorbed CO2 onto the polymers were effectively desorbed at room temperature, illustrating the potential application of such polymers for repeated adsorption/desorption of CO2. The CO2 adsorption capacities of these polymers were dependent upon their nitrogen content, specific surface area, and pore size. The available nitrogen atoms for binding to the carbon of CO2 via tetrel bonds also plays an important role in the capture of this gas. Minimal and much lower CO2 adsorption was also noted with two crystalline polymers, compared to the five amorphous counterparts. Intermolecular hydrogen bonding and π-π interaction effectively prevented the polymer N sites of the crystalline polymers from interacting with polarized CO2 molecules.

13.
ACS Appl Bio Mater ; 3(11): 8023-8031, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-35019541

ABSTRACT

The synthesis of nitrogen-doped carbon dots (N@CDs) was accomplished by a hydrothermal process using meta- phenylenediamine as a source of carbon and nitrogen. As prepared N@CDs exhibited bright blue color fluorescence emission (λex = 340 nm and λem = 420 nm) with a quantum yield of 12%. Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus were eradicated by N@CDs with a minimum inhibition concentration (MIC) of 1 and 0.75 mg/mL, respectively. The N@CDs were also proven as nanovesicles for drug molecules where the drug release displayed a sustained time-dependent profile at the physiological condition. The release of ciprofloxacin as a model drug was governed by the Korsmeyer-Peppas model, indicating ∼60% of its release from the N@CD conjugated drug system at the physiological pH. Selective analysis of trinitrophenol (TNP), a popular explosive, was achieved by fluorescence quenching of N@CDs, compared favorably with other nitrophenols. An estimated detection limit of TNP was 2.45 µM with a linear response spanning from 1 to 75 µM.

14.
Ultrason Sonochem ; 62: 104864, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31810873

ABSTRACT

Polyaniline (PANI) synthesized by simple CDs (carbon dots) initiated polymerization has formed a composite with TiO2 and SiO2, respectively via a sonochemical method. These PANI@TiO2 and PANI@SiO2 composites were proven as effective adsorbent materials to rapidly adsorb the anionic and cationic dyes from wastewater at neutral pH and ambient temperature. Selected popular cationic and anionic organic dyes consisted of methylene blue (MB), brilliant blue (BB), Evans blue (EB), crystal violet (CV), Congo red (CR), rhodamine B (RB), and rhodamine 6G (R6G). The adsorption equilibria were governed by Langmuir and Freundlich isotherms. The kinetic results revealed that the PANI@TiO2 and PANI@SiO2 composite materials synthesized via the sonochemical method are efficient adsorbents compared to other adsorbent materials for the removal of organic dyes from the water. The adsorbed dyes were effectively desorbed from the composites, rendering the reusability of PANI@TiO2 and PANI@SiO2. The estimated adsorption capacities of PANI@TiO2 and PANI@SiO2 composites were 89, 93, 80, 94 and 74, 71, 61, 61 mg/g for MB, CR, CV, and R6G, respectively.

15.
Nanomaterials (Basel) ; 9(12)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817151

ABSTRACT

A simple one-step process for the polymerization of dopamine has been developed using nitrogen-doped carbon dots (N@C-dots) as the sole initiator. The synthesized amorphous polydopamine (PDA)-doped N@C-dots (PDA-N@C-dots composite) exhibited a negative charge of -39 mV with particle sizes ranging from 200 to 1700 nm. The stable colloidal solution was active against methicillin-resistant Staphylococcus aureus (MRSA), a Gram-negative bacterium. The strong adhesion of the polymer to the bacterial membrane resulted in a limited diffusion of nutrients and wastes in and out of the cell cytosol, which is a generic mechanism to trigger cell death. Another possible route is the autoxidation of the catechol moiety of PDA to form quinone and release reactive oxygen species (ROS) such as superoxide radicle and hydrogen peroxide, two well-known ROS with antimicrobial properties against both Gram-negative and Gram-positive bacteria.

16.
Polymers (Basel) ; 11(8)2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31357422

ABSTRACT

In polymer chemistry, polymerization constitutes the process of the conversion of monomers into polymers using an initiator to form polymeric chains. There are many polymerization techniques and different systems exist by which the polymers are classified. Recently, our group has reported the synthesis of polymers using both carbon dots (CDs) and UV light as initiators. In these reports, the carbon dots were used with or without UV light. The CDs produce free radicals in the presence of UV light, indicating their role as initiators. The CD surface has many unshared or unpaired electrons, making it negatively charged. The present study focuses on the use of CDs for the formation of polymers from monomers containing various functional group. The properties of the synthesized CDs and the polymers obtained from the various monomers were characterized by various analytical techniques, including Fourier-Transform Infrared (FTIR) spectroscopy, X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Solid-State NMR spectroscopy. This polymerization technique is of interest both from the scientific aspect and for its applicative potential. The synthesized polymers were investigated for their various applications.

17.
ACS Omega ; 3(6): 7061-7068, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-31458868

ABSTRACT

Carbon dots (CDs) can generate free radicals in aqueous solutions which lead to their unique properties and many applications. The main goal of the current study is to employ CDs as initiators for the polymerization of the monomer 4,4'-diaminodiphenylmethane. Efforts have been recently focused on developing a polymerization process by using a facile one-step synthesis using HNO3, CDs, and UV light as initiators. Here, this acidic polymerization process is similarly carried out by using just UV light and CDs with no other initiator. The newly synthesized poly(4,4'-diaminodiphenylmethane) (PDDM) was confirmed by several analytical techniques, including X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and solid-state NMR spectra. The synthesis of PDDM was further probed for dye adsorption and it was found that the polymer well adsorbs methylene blue. Adsorption experiments were carried out by changing different parameters such as the initial concentration of methylene blue and the contact time for which the reaction progress was monitored by UV-visible spectroscopy.

18.
ACS Omega ; 3(7): 7196-7203, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-31458882

ABSTRACT

This work unraveled kinetics, isotherm, and thermodynamic properties of methylene blue (MB) adsorbed on polyaniline (PANI) and polypyrrole (PPY). The two polymers, PANI and PPY, synthesized by a facile C-dot (CD)-initiated polymerization method have been proven as the effective adsorbent materials to remove MB from wastewater. This dye model is also generally employed as a redox indicator in analytical chemistry and exhibits blue in an oxidizing environment, but it is colorless when exposed to a reducing agent. The effects of temperature, adsorbent amount contact time, and dye concentration were consistently examined. The adsorption capacity of the polymers at 28 °C could reach 19.2 mg/g. The adsorption equilibrium of the dye was attained after 90 and 120 min of contact time with PANI and PPY, respectively. The equilibrium details were well described by Freundlich and Langmuir isotherms. Results showed that PANI and PPY prepared using CD-initiated polymerization are better adsorbents compared to the commercial PANI powder for the removal of MB from water.

SELECTION OF CITATIONS
SEARCH DETAIL
...