Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 11(12)2019 12 09.
Article in English | MEDLINE | ID: mdl-31835420

ABSTRACT

A knowledge, attitude and practice (KAP) study was conducted in three districts of Malawi to test whether the training had resulted in increased knowledge and adoption of recommended pre- and post-harvest crop management practices, and their contribution to reducing aflatoxin contamination in groundnut, maize and sorghum. The study was conducted with 900 farmers at the baseline and 624 farmers at the end-line, while 726 and 696 harvested crop samples were collected for aflatoxin testing at the baseline and end-line, respectively. Results show that the knowledge and practice of pre- and post-harvest crop management for mitigating aflatoxin were inadequate among the farmers at the baseline but somewhat improved after the training as shown at the end-line. As a result, despite unfavorable weather, the mean aflatoxin contamination level in their grain samples decreased from 83.6 to 55.8 ppb (p < 0.001). However, it was also noted that increased knowledge did not significantly change farmers' attitude toward not consuming grade-outs because of economic incentive incompatibility, leaving potential for improving the practices further. This existing gap in the adoption of aflatoxin mitigation practices calls for approaches that take into account farmers' needs and incentives to attain sustainable behavioral change.


Subject(s)
Aflatoxins , Agriculture/methods , Farmers , Food Contamination/prevention & control , Health Knowledge, Attitudes, Practice , Aflatoxins/analysis , Arachis , Female , Food Contamination/analysis , Health Behavior , Humans , Malawi , Male , Sorghum , Zea mays
2.
Mycotoxin Res ; 33(2): 113-119, 2017 May.
Article in English | MEDLINE | ID: mdl-28124218

ABSTRACT

In Zambia, groundnut products (milled groundnut powder, groundnut kernels) are mostly sold in under-regulated markets. Coupled with the lack of quality enforcement in such markets, consumers may be at risk to aflatoxin exposure. However, the level of aflatoxin contamination in these products is not known. Compared to groundnut kernels, milled groundnut powder obscures visual indicators of aflatoxin contamination in groundnuts such as moldiness, discoloration, insect damage or kernel damage. A survey was therefore conducted from 2012 to 2014, to estimate and compare aflatoxin levels in these products (n = 202), purchased from markets in important groundnut growing districts and in urban areas. Samples of whole groundnut kernels (n = 163) and milled groundnut powder (n = 39) were analysed for aflatoxin B1 (AFB1) by competitive enzyme-linked immunosorbent assay (cELISA). Results showed substantial AFB1 contamination levels in both types of groundnut products with maximum AFB1 levels of 11,100 µg/kg (groundnut kernels) and 3000 µg/kg (milled groundnut powder). However, paired t test analysis showed that AFB1 contamination levels in milled groundnut powder were not always significantly higher (P > 0.05) than those in groundnut kernels. Even for products from the same vendor, AFB1 levels were not consistently higher in milled groundnut powder than in whole groundnut kernels. This suggests that vendors do not systematically sort out whole groundnut kernels of visually poor quality for milling. However, the overall contamination levels of groundnut products with AFB1 were found to be alarmingly high in all years and locations. Therefore, solutions are needed to reduce aflatoxin levels in such under-regulated markets.


Subject(s)
Aflatoxin B1/analysis , Arachis/chemistry , Food Contamination , Mycotoxins/analysis , Enzyme-Linked Immunosorbent Assay , Zambia
3.
J Food Prot ; 79(5): 795-800, 2016 05.
Article in English | MEDLINE | ID: mdl-27296427

ABSTRACT

A 3-year comprehensive analysis of aflatoxin contamination in peanut butter was conducted in Zambia, sub-Saharan Africa. The study analyzed 954 containers of 24 local and imported peanut butter brands collected from shops in Chipata, Mambwe, Petauke, Katete, and Nyimba districts and also in Lusaka from 2012 to 2014. For analysis, a sample included six containers of a single brand, from the same processing batch number and the same shop. Each container was quantitatively analyzed for aflatoxin B1 (AFB1) in six replicates by using competitive enzyme-linked immunosorbent assay; thus, aflatoxin contamination level of a given sample was derived from an average of 36 test values. Results showed that 73% of the brands tested in 2012 were contaminated with AFB1 levels >20 µg/kg and ranged up to 130 µg/kg. In 2013, 80% of the brands were contaminated with AFB1 levels >20 µg/kg and ranged up to 10,740 µg/kg. Compared with brand data from 2012 and 2013, fewer brands in 2014, i.e., 53%, had aflatoxin B1 levels >20 µg/kg and ranged up to 1,000 µg/kg. Of the eight brands tested repeatedly across the 3-year period, none consistently averaged ≤20 µg/kg. Our survey clearly demonstrates the regular occurrence of high levels of AF B1 in peanut butter in Zambia. Considering that some of the brands tested originated from neighboring countries such as Malawi, Zimbabwe, and South Africa, the current findings provide a sub-Saharan regional perspective regarding the safety of peanut butter.


Subject(s)
Aflatoxins , Arachis , Aflatoxin B1 , Food Contamination , Humans , South Africa , Zambia , Zimbabwe
SELECTION OF CITATIONS
SEARCH DETAIL
...