Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Vision Res ; 222: 108438, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38851047

ABSTRACT

Biological visual systems rely on pose estimation of 3D objects to navigate and interact with their environment, but the neural mechanisms and computations for inferring 3D poses from 2D retinal images are only partially understood, especially where stereo information is missing. We previously presented evidence that humans infer the poses of 3D objects lying centered on the ground by using the geometrical back-transform from retinal images to viewer-centered world coordinates. This model explained the almost veridical estimation of poses in real scenes and the illusory rotation of poses in obliquely viewed pictures, which includes the "pointing out of the picture" phenomenon. Here we test this model for more varied configurations and find that it needs to be augmented. Five observers estimated poses of sloped, elevated, or off-center 3D sticks in each of 16 different poses displayed on a monitor in frontal and oblique views. Pose estimates in scenes and pictures showed remarkable accuracy and agreement between observers, but with a systematic fronto-parallel bias for oblique poses similar to the ground condition. The retinal projection of the pose of an object sloped wrt the ground depends on the slope. We show that observers' estimates can be explained by the back-transform derived for close to the correct slope. The back-transform explanation also applies to obliquely viewed pictures and to off-center objects and elevated objects, making it more likely that observers use internalized perspective geometry to make 3D pose inferences while actively incorporating inferences about other aspects of object placement.

2.
J Vis ; 24(2): 3, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38306112

ABSTRACT

Why do moving objects appear rigid when projected retinal images are deformed non-rigidly? We used rotating rigid objects that can appear rigid or non-rigid to test whether shape features contribute to rigidity perception. When two circular rings were rigidly linked at an angle and jointly rotated at moderate speeds, observers reported that the rings wobbled and were not linked rigidly, but rigid rotation was reported at slow speeds. When gaps, paint, or vertices were added, the rings appeared rigidly rotating even at moderate speeds. At high speeds, all configurations appeared non-rigid. Salient features thus contribute to rigidity at slow and moderate speeds but not at high speeds. Simulated responses of arrays of motion-energy cells showed that motion flow vectors are predominantly orthogonal to the contours of the rings, not parallel to the rotation direction. A convolutional neural network trained to distinguish flow patterns for wobbling versus rotation gave a high probability of wobbling for the motion-energy flows. However, the convolutional neural network gave high probabilities of rotation for motion flows generated by tracking features with arrays of MT pattern-motion cells and corner detectors. In addition, circular rings can appear to spin and roll despite the absence of any sensory evidence, and this illusion is prevented by vertices, gaps, and painted segments, showing the effects of rotational symmetry and shape. Combining convolutional neural network outputs that give greater weight to motion energy at fast speeds and to feature tracking at slow speeds, with the shape-based priors for wobbling and rolling, explained rigid and non-rigid percepts across shapes and speeds (R2 = 0.95). The results demonstrate how cooperation and competition between different neuronal classes lead to specific states of visual perception and to transitions between the states.


Subject(s)
Illusions , Motion Perception , Humans , Motion Perception/physiology , Rotation , Visual Perception , Pattern Recognition, Visual
3.
bioRxiv ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37503257

ABSTRACT

Why do moving objects appear rigid when projected retinal images are deformed non-rigidly? We used rotating rigid objects that can appear rigid or non-rigid to test whether shape features contribute to rigidity perception. When two circular rings were rigidly linked at an angle and jointly rotated at moderate speeds, observers reported that the rings wobbled and were not linked rigidly but rigid rotation was reported at slow speeds. When gaps, paint or vertices were added, the rings appeared rigidly rotating even at moderate speeds. At high speeds, all configurations appeared non-rigid. Salient features thus contribute to rigidity at slow and moderate speeds, but not at high speeds. Simulated responses of arrays of motion-energy cells showed that motion flow vectors are predominantly orthogonal to the contours of the rings, not parallel to the rotation direction. A convolutional neural network trained to distinguish flow patterns for wobbling versus rotation, gave a high probability of wobbling for the motion-energy flows. However, the CNN gave high probabilities of rotation for motion flows generated by tracking features with arrays of MT pattern-motion cells and corner detectors. In addition, circular rings can appear to spin and roll despite the absence of any sensory evidence, and this illusion is prevented by vertices, gaps, and painted segments, showing the effects of rotational symmetry and shape. Combining CNN outputs that give greater weight to motion energy at fast speeds and to feature tracking at slow, with the shape-based priors for wobbling and rolling, explained rigid and nonrigid percepts across shapes and speeds (R2=0.95). The results demonstrate how cooperation and competition between different neuronal classes leads to specific states of visual perception and to transitions between the states.

4.
J Vis ; 20(10): 4, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33007082

ABSTRACT

We show that the classical problem of three-dimensional (3D) size perception in obliquely viewed pictures can be understood by comparing human performance to the optimal geometric solution. A photograph seen from the camera position, can form the same retinal projection as the physical 3D scene, but retinal projections of sizes and shapes are distorted in oblique viewing. For real scenes, we previously showed that size and shape inconstancy result despite observers using the correct geometric back-transform, because some retinal images evoke misestimates of object slant or viewing elevation. Now, we examine how observers estimate 3D sizes in oblique views of pictures of objects lying on the ground in different poses. Compared to estimates for real scenes, in oblique views of pictures, sizes were seriously underestimated for objects at frontoparallel poses, but there was almost no change for objects perceived as pointing toward the viewer. The inverse of the function relating projected length to pose, camera elevation and viewing azimuth, gives the optimal correction factor for inferring correct 3D lengths if the elevation and azimuth are estimated accurately. Empirical correction functions had similar shapes to optimal, but lower amplitude. Measurements revealed that observers systematically underestimated viewing azimuth, similar to the frontoparallel bias for object pose perception. A model that adds underestimation of viewing azimuth to the geometrical back-transform, provided good fits to estimated 3D lengths from oblique views. These results add to accumulating evidence that observers use internalized projective geometry to perceive sizes, shapes, and poses in 3D scenes and their pictures.


Subject(s)
Depth Perception/physiology , Size Perception , Humans , Retina/physiology
5.
J Vis ; 20(8): 14, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32766745

ABSTRACT

Judging the poses, sizes, and shapes of objects accurately is necessary for organisms and machines to operate successfully in the world. Retinal images of three-dimensional objects are mapped by the rules of projective geometry and preserve the invariants of that geometry. Since Plato, it has been debated whether geometry is innate to the human brain, and Poincare and Einstein thought it worth examining whether formal geometry arises from experience with the world. We examine if humans have learned to exploit projective geometry to estimate sizes and aspects of three-dimensional shape that are related to relative lengths and aspect ratios. Numerous studies have examined size invariance as a function of physical distance, which changes scale on the retina. However, it is surprising that possible constancy or inconstancy of relative size seems not to have been investigated for object pose, which changes retinal image size differently along different axes. We show systematic underestimation of length for extents pointing toward or away from the observer, both for static objects and dynamically rotating objects. Observers do correct for projected shortening according to the optimal back-transform, obtained by inverting the projection function, but the correction is inadequate by a multiplicative factor. The clue is provided by the greater underestimation for longer objects, and the observation that they seem to be more slanted toward the observer. Adding a multiplicative factor for perceived slant in the back-transform model provides good fits to the corrections used by observers. We quantify the slant illusion with two different slant matching measurements, and use a dynamic demonstration to show that the slant illusion perceptually dominates length nonrigidity. In biological and mechanical objects, distortions of shape are manifold, and changes in aspect ratio and relative limb sizes are functionally important. Our model shows that observers try to retain invariance of these aspects of shape to three-dimensional rotation by correcting retinal image distortions due to perspective projection, but the corrections can fall short. We discuss how these results imply that humans have internalized particular aspects of projective geometry through evolution or learning, and if humans assume that images are preserving the continuity, collinearity, and convergence invariances of projective geometry, that would simply explain why illusions such as Ames' chair appear cohesive despite being a projection of disjointed elements, and thus supplement the generic viewpoint assumption.


Subject(s)
Form Perception/physiology , Imaging, Three-Dimensional , Mental Recall/physiology , Size Perception/physiology , Humans , Illusions/physiology , Retina/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...