Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 13: 1042787, 2022.
Article in English | MEDLINE | ID: mdl-36531494

ABSTRACT

Aberrant activation of the epidermal growth factor receptor (EGFR) by mutations has been implicated in a variety of human cancers. Elucidation of the structure of the full-length receptor is essential to understand the molecular mechanisms underlying its activation. Unlike previously anticipated, here, we report that purified full-length EGFR adopts a homodimeric form in vitro before and after ligand binding. Cryo-electron tomography analysis of the purified receptor also showed that the extracellular domains of the receptor dimer, which are conformationally flexible before activation, are stabilized by ligand binding. This conformational flexibility stabilization most likely accompanies rotation of the entire extracellular domain and the transmembrane domain, resulting in dissociation of the intracellular kinase dimer and, thus, rearranging it into an active form. Consistently, mutations of amino acid residues at the interface of the symmetric inactive kinase dimer spontaneously activate the receptor in vivo. Optical observation also indicated that binding of only one ligand activates the receptor dimer on the cell surface. Our results suggest how oncogenic mutations spontaneously activate the receptor and shed light on the development of novel cancer therapies.


Subject(s)
ErbB Receptors , Humans , Ligands , Allosteric Regulation , Dimerization , ErbB Receptors/genetics , ErbB Receptors/metabolism , Cell Membrane/metabolism
2.
J Vis Exp ; (184)2022 06 23.
Article in English | MEDLINE | ID: mdl-35816003

ABSTRACT

The nematode Caenorhabditis elegans is an attractive model organism to study learning and memory at molecular and cellular levels because of the simplicity of its nervous system, whose chemical and electrical wiring diagrams were completely reconstructed from serial electron micrographs of thin sections. Here, we describe detailed protocols for the conditioning of C. elegans by massed and spaced training for the formation of short-term memory (STM) and long-term memory (LTM), respectively. By pairing 1-propanol and hydrochloric acid as conditioned and unconditioned stimuli, respectively, C. elegans was successfully trained to form aversive associative STM and LTM. While naïve animals were attracted to 1-propanol, the trained animals were no longer or very weakly attracted to 1-propanol. Like in other organisms such as Aplysia and Drosophila, "learning and memory genes" play essential roles in memory formation. Particularly, NMDA-type glutamate receptors, expressed in only six pairs of interneurons in C. elegans, are required for the formation of both STM and LTM, possibly as a coincidence factor. Therefore, the memory trace may reside among the interneurons.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , 1-Propanol , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Conditioning, Classical , Memory, Long-Term/physiology , Memory, Short-Term/physiology , Receptors, N-Methyl-D-Aspartate
3.
Aging (Albany NY) ; 12(23): 23525-23547, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33276344

ABSTRACT

Some genes are essential for survival, while other genes play modulatory roles on health and survival. Genes that play modulatory roles may promote an organism's survival and health by fine-tuning physiological processes. An unbiased search for genes that alter an organism's ability to maintain aspects of health may uncover modulators of lifespan and healthspan. From an unbiased screen for Caenorhabditis elegans mutants that show a progressive decline in motility, we aimed to identify genes that play a modulatory role in maintenance of locomotor healthspan. Here we report the involvement of hda-3, encoding a class I histone deacetylase, as a genetic factor that contributes in the maintenance of general health and locomotion in C. elegans. We identified a missense mutation in HDA-3 as the causative mutation in one of the isolated strains that show a progressive decline in maximum velocity and travel distance. From transcriptome analysis, we found a cluster of genes on Chromosome II carrying BATH domains that were downregulated by hda-3. Furthermore, downregulation of individual bath genes leads to significant decline in motility. Our study identifies genetic factors that modulate the maintenance of locomotor healthspan and may reveal potential targets for delaying age-related locomotor decline.


Subject(s)
Aging/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Histone Deacetylases/genetics , Locomotion/genetics , Mutation, Missense , Aging/metabolism , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans Proteins/metabolism , Dystrophin/genetics , Dystrophin/metabolism , Gene Expression Regulation , Histone Deacetylases/metabolism , Transcriptome
4.
G3 (Bethesda) ; 9(8): 2415-2423, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31213517

ABSTRACT

Two people with the same lifespan do not necessarily have the same healthspan. One person may retain locomotor and cognitive abilities until the end of life, while another person may lose them during adulthood. Unbiased searches for genes that are required to maintain locomotor ability during adulthood may uncover key regulators of locomotor healthspan. Here, we take advantage of the relatively short lifespan of the nematode Caenorhabditis elegans and develop a novel screening procedure to collect mutants with locomotor deficits that become apparent in adulthood. After ethyl methanesulfonate mutagenesis, we isolated five C. elegans mutant strains that progressively lose adult locomotor ability. In one of the mutant strains, a nonsense mutation in elpc-2, which encodes Elongator Complex Protein Component 2, causes a progressive decline in locomotor ability during adulthood. Mutants and mutations identified in the present screen may provide insights into mechanisms of age-related locomotor impairment and the maintenance of locomotor healthspan.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Locomotion , Mutation , Phenotype , Animals , Genetic Association Studies
5.
Sci Rep ; 9(1): 3430, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837592

ABSTRACT

Active propagation of electrical signals in C. elegans neurons requires ion channels capable of regenerating membrane potentials. Here we report regenerative depolarization of a major gustatory sensory neuron, ASEL. Whole-cell patch-clamp recordings in vivo showed supralinear depolarization of ASEL upon current injection. Furthermore, stimulation of animal's nose with NaCl evoked all-or-none membrane depolarization in ASEL. Mutant analysis showed that EGL-19, the α1 subunit of L-type voltage-gated Ca2+ channels, is essential for regenerative depolarization of ASEL. ASEL-specific knock-down of EGL-19 by RNAi demonstrated that EGL-19 functions in C. elegans chemotaxis along an NaCl gradient. These results demonstrate that a natural substance induces regenerative all-or-none electrical signals in dendrites, and that these signals are essential for activation of sensory neurons for chemotaxis. As in other vertebrate and invertebrate nervous systems, active information processing in dendrites occurs in C. elegans, and is necessary for adaptive behavior.


Subject(s)
Action Potentials , Caenorhabditis elegans/physiology , Dendrites/metabolism , Electrophysiological Phenomena , Animals , Calcium/metabolism , Calcium Signaling , Membrane Potentials , Patch-Clamp Techniques , Sensory Receptor Cells/physiology
6.
Bio Protoc ; 8(4): e2740, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-34179268

ABSTRACT

The nematode Caenorhabditis elegans is widely used for behavioral studies ranging from simple chemosensation to associative learning and memory. It is vital for such studies to determine optimal concentrations of attractive and aversive chemicals that C. elegans can sense. Here we describe a resource localization assay in which a chemical compound of interest is placed in two compartments of a quadrant plate in order to determine optimal concentrations of the chemical in behavioral studies. Using the assay, we determined the optimal concentration of a water-soluble attractant, KCl, as an unconditioned stimulus for the study of associative learning and memory. In this protocol, we also describe a chemotaxis assay using a square agar plate spotted with an aversive olfactory cue, 1-nonanol, as a conditioned stimulus.

7.
Cells ; 6(2)2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28574446

ABSTRACT

The epidermal growth factor receptor (EGFR) plays vital roles in cellular processes including cell proliferation, survival, motility, and differentiation. The dysregulated activation of the receptor is often implicated in human cancers. EGFR is synthesized as a single-pass transmembrane protein, which consists of an extracellular ligand-binding domain and an intracellular kinase domain separated by a single transmembrane domain. The receptor is activated by a variety of polypeptide ligands such as epidermal growth factor and transforming growth factor α. It has long been thought that EGFR is activated by ligand-induced dimerization of the receptor monomer, which brings intracellular kinase domains into close proximity for trans-autophosphorylation. An increasing number of diverse studies, however, demonstrate that EGFR is present as a pre-formed, yet inactive, dimer prior to ligand binding. Furthermore, recent progress in structural studies has provided insight into conformational changes during the activation of a pre-formed EGFR dimer. Upon ligand binding to the extracellular domain of EGFR, its transmembrane domains rotate or twist parallel to the plane of the cell membrane, resulting in the reorientation of the intracellular kinase domain dimer from a symmetric inactive configuration to an asymmetric active form (the "rotation model"). This model is also able to explain how oncogenic mutations activate the receptor in the absence of the ligand, without assuming that the mutations induce receptor dimerization. In this review, we discuss the mechanisms underlying the ligand-induced activation of the preformed EGFR dimer, as well as how oncogenic mutations constitutively activate the receptor dimer, based on the rotation model.

8.
Front Behav Neurosci ; 11: 80, 2017.
Article in English | MEDLINE | ID: mdl-28507513

ABSTRACT

Because of the relative simplicity of its nervous system, Caenorhabditis elegans is a useful model organism to study learning and memory at cellular and molecular levels. For appetitive conditioning in C. elegans, food has exclusively been used as an unconditioned stimulus (US). It may be difficult to analyze neuronal circuits for associative memory since food is a multimodal combination of olfactory, gustatory, and mechanical stimuli. Here, we report classical appetitive conditioning and associative memory in C. elegans, using 1-nonanol as a conditioned stimulus (CS), and potassium chloride (KCl) as a US. Before conditioning, C. elegans innately avoided 1-nonanol, an aversive olfactory stimulus, and was attracted by KCl, an appetitive gustatory stimulus, on assay agar plates. Both massed training without an intertrial interval (ITI) and spaced training with a 10-min ITI induced significant levels of memory of association regarding the two chemicals. Memory induced by massed training decayed within 6 h, while that induced by spaced training was retained for more than 6 h. Animals treated with inhibitors of transcription or translation formed the memory induced by spaced training less efficiently than untreated animals, whereas the memory induced by massed training was not significantly affected by such treatments. By definition, therefore, memories induced by massed training and spaced training are classified as short-term memory (STM) and long-term memory (LTM), respectively. When animals conditioned by spaced training were exposed to 1-nonanol alone, their learning index was lower than that of untreated animals, suggesting that extinction learning occurs in C. elegans. In support of these results, C. elegans mutants defective in nmr-1, encoding an NMDA receptor subunit, formed both STM and LTM less efficiently than wild-type animals, while mutations in crh-1, encoding a ubiquitous transcription factor CREB required for memory consolidation, affected LTM, but not STM. The paradigm established in the present study should allow us to elucidate neuronal circuit plasticity for appetitive learning and memory in C. elegans.

9.
Front Mol Neurosci ; 10: 15, 2017.
Article in English | MEDLINE | ID: mdl-28197073

ABSTRACT

The amyloid precursor protein (APP) interacts with the tropomyosin receptor kinase A (TrkA) in normal rat, mouse, and human brain tissue but not in Alzheimer's disease (AD) brain tissue. However, it has not been reported whether the two proteins interact directly, and if so, which domains are involved. Clarifying these points will increase our understanding of the role and regulation of the TrkA/APP interaction in normal brain functioning as well as in AD. Here we addressed these questions using bimolecular fluorescence complementation (BiFC) and the proximity ligation assay (PLA). We demonstrated that exogenously expressed APP and TrkA associate through their juxtamembrane/transmembrane domains, to form a complex that localizes mainly to the plasma membrane, endoplasmic reticulum (ER) and Golgi. Formation of the complex was inhibited by p75NTR, ShcC and Mint-2. Importantly, we demonstrated that the association between endogenous APP and TrkA in primary septal neurons were modified by NGF, or by drugs that either inhibit ER-to-Golgi transport or perturb microtubules and microfilaments. Interestingly, several agents that induce cell death [amyloid ß (Aß)-peptide, staurosporine and rapamycin], albeit via different mechanisms, all caused dissociation of APP/TrkA complexes and increased production of C-terminal fragment (ß-CTF) APP fragment. These findings open new perspectives for investigating the interplay between these proteins during neurodegeneration and AD.

10.
Article in English | MEDLINE | ID: mdl-28123378

ABSTRACT

Invertebrate models have generated many new insights into transmembrane signaling by cell-surface receptors. This review focuses on receptor guanylyl cyclases (rGCs) and describes recent advances in understanding their roles in sensory processing in the nematode, Caenorhabditis elegans. A complete analysis of the C. elegans genome elucidated 27 rGCs, an unusually large number compared with mammalian genomes, which encode 7 rGCs. Most C. elegans rGCs are expressed in sensory neurons and play roles in sensory processing, including gustation, thermosensation, olfaction, and phototransduction, among others. Recent studies have found that by producing a second messenger, guanosine 3',5'-cyclic monophosphate, some rGCs act as direct sensor molecules for ions and temperatures, while others relay signals from G protein-coupled receptors. Interestingly, genetic and biochemical analyses of rGCs provide the first example of an obligate heterodimeric rGC. Based on recent structural studies of rGCs in mammals and other organisms, molecular mechanisms underlying activation of rGCs are also discussed in this review.

11.
Bioessays ; 37(9): 959-67, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26241732

ABSTRACT

It has long been thought that transmembrane cell-surface receptors, such as receptor tyrosine kinases and cytokine receptors, among others, are activated by ligand binding through ligand-induced dimerization of the receptors. However, there is growing evidence that prior to ligand binding, various transmembrane receptors have a preformed, yet inactive, dimeric structure on the cell surface. Various studies also demonstrate that during transmembrane signaling, ligand binding to the extracellular domain of receptor dimers induces a rotation of transmembrane domains, followed by rearrangement and/or activation of intracellular domains. The paper here describes transmembrane cell-surface receptors that are known or proposed to exist in dimeric form prior to ligand binding, and discusses how these preformed dimers are activated by ligand binding.


Subject(s)
Cell Membrane/metabolism , Models, Biological , Receptors, Cell Surface/metabolism , Rotation , Animals , Humans , Ligands , Protein Multimerization
12.
J Neurosci Res ; 93(11): 1623-30, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26154399

ABSTRACT

Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.


Subject(s)
Homeostasis/physiology , Hydrogen-Ion Concentration , Membrane Proteins/metabolism , Neurons/metabolism , Animals , Humans
13.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 9): 1219-23, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25195895

ABSTRACT

The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni(2+). To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P41212, while those of apo-Tar2 and Asp-Tar2 adopted space groups P212121 and C2, respectively.


Subject(s)
Aspartic Acid/chemistry , Bacterial Proteins/chemistry , Escherichia coli/chemistry , Periplasm/chemistry , Receptors, Amino Acid/chemistry , Base Sequence , Crystallization , Crystallography, X-Ray , DNA Primers , Plasmids , Polymerase Chain Reaction
14.
Cells ; 3(2): 304-30, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24758840

ABSTRACT

Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights.

15.
Curr Biol ; 23(11): 1007-12, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23664973

ABSTRACT

Survival requires that living organisms continuously monitor environmental and tissue pH. Animals sense acidic pH using ion channels and G-protein-coupled receptors (GPCRs), but monitoring of alkaline pH is not well understood. We report here that in the nematode Caenorhabditis elegans, a transmembrane receptor-type guanylyl cyclase (RGC), GCY-14, of the ASEL gustatory neuron, plays an essential role in the sensing of extracellular alkalinity. Activation of GCY-14 opens a cGMP-gated cation channel encoded by tax-2 and tax-4, resulting in Ca(2+) entry into ASEL. Ectopic expression of GCY-14 in other neurons indicates that it accounts for the alkalinity sensing capability. Domain-swapping and site-directed mutagenesis of GCY-14 reveal that GCY-14 functions as a homodimer, in which histidine of the extracellular domains plays a crucial role in alkalinity detection. These results argue that in addition to ion channels and GPCRs, RGCs also play a role in pH sensation in neurons.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Calcium Signaling , Cyclic GMP/metabolism , Guanylate Cyclase/genetics , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Guanylate Cyclase/metabolism , Hydrogen-Ion Concentration , Ion Channels/metabolism , Molecular Sequence Data , Neurons/metabolism , Neurons/physiology
16.
J Mol Signal ; 7(1): 2, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22269274

ABSTRACT

BACKGROUND: Neurotrophins (NTs) and their receptors play crucial roles in the development, functions and maintenance of nervous systems. It is widely believed that NT-induced dimerization of the receptors initiates the transmembrane signaling. However, it is still controversial whether the receptor molecule has a monomeric or dimeric structure on the cell surface before its ligand binding. FINDINGS: Using chemical cross-linking, bimolecular fluorescence complementation (BiFC) and luciferase fragment complementation (LFC) assays, in this study, we show the brain-derived neurotrophic factor (BDNF) receptor TrkB exists as a homodimer before ligand binding. We have also found by using BiFC and LFC that the dimer forms in the endoplasmic reticulum (ER), and that the receptor lacking its intracellular domain cannot form the dimeric structure. CONCLUSIONS: Most, if not all, of the TrkB receptor has a preformed, yet inactive, homodimeric structure before BDNF binding. The intracellular domain of TrkB plays a crucial role in the spontaneous dimerization of the newly synthesized receptors, which occurs in ER. These findings provide new insight into an understanding of a molecular mechanism underlying transmembrane signaling mediated by NT receptors.

17.
Learn Mem ; 18(10): 654-65, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21960709

ABSTRACT

The nematode Caenorhabditis elegans (C. elegans) adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH 4.0), as an unconditioned stimulus (US). Before the conditioning, worms were attracted to 1-propanol and avoided HCl in chemotaxis assay. In contrast, after massed or spaced training, worms were either not attracted at all to or repelled from 1-propanol on the assay plate. The memory after the spaced training was retained for 24 h, while the memory after the massed training was no longer observable within 3 h. Worms pretreated with transcription and translation inhibitors failed to form the memory by the spaced training, whereas the memory after the massed training was not significantly affected by the inhibitors and was sensitive to cold-shock anesthesia. Therefore, the memories after the spaced and massed trainings can be classified as long-term memory (LTM) and short-term/middle-term memory (STM/MTM), respectively. Consistently, like other organisms including Aplysia, Drosophila, and mice, C. elegans mutants defective in nmr-1 encoding an NMDA receptor subunit failed to form both LTM and STM/MTM, while mutations in crh-1 encoding the CREB transcription factor affected only the LTM.


Subject(s)
Caenorhabditis elegans/physiology , Learning/physiology , Memory, Long-Term/physiology , Smell/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans Proteins/biosynthesis , Conditioning, Classical , Polymerase Chain Reaction
18.
FEBS Lett ; 585(2): 295-9, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21187090

ABSTRACT

The tropomyosin-related kinase A (TrkA) receptor and its ligand, nerve growth factor (NGF), play crucial roles in the development and function of the nervous system. NGF is believed to activate TrkA by bridging two TrkA monomers, leading to TrkA transphosphorylation. However, here we show that the majority of TrkA receptors exist as preformed, yet inactive, homodimers prior to NGF binding by using three different approaches such as chemical crosslinking and enzyme fragment complementation assay. Furthermore, TrkA homodimers are formed in endoplasmic reticulum before newly synthesized receptors reach the cell surface. These findings shed light on molecular mechanisms underlying transmembrane signaling by TrkA.


Subject(s)
Receptor, trkA/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Humans , Nerve Growth Factor/metabolism , Protein Multimerization , Protein Transport , Rats , Receptor, trkA/chemistry , Receptors, Nerve Growth Factor/metabolism
19.
Int J Biol Sci ; 6(2): 163-71, 2010 Mar 29.
Article in English | MEDLINE | ID: mdl-20376207

ABSTRACT

Ulcerative colitis (UC) is one of the major forms of inflammatory bowel disease with unknown cause. A molecular marker, WAFL, has recently been found to be up-regulated in the inflamed colonic mucosa of UC patients. Towards understanding biological function of WAFL, we analyzed proteins interacting with WAFL in HEK-293 cells by immunoprecipitation and mass spectrometry. Among four proteins found to specifically interact with WAFL, both KIAA0196 and KIAA1033 bind to alpha-appendage of the adaptor protein complex 2 (AP2), which acts as an interaction hub for accessory proteins in endocytosis mediated by clathrin-coated vesicle (CCV). The specific interaction between WAFL and KIAA0196 was also confirmed in human colorectal carcinoma HCT-116 cells by co-immunoprecipitation with specific antibodies. Meta-analyses of the databases of expressed genes suggest that the three genes are co-expressed in many tissues and cell types, and that their molecular function may be classified in the category of 'membrane traffic protein'. Therefore, these results suggest that WAFL may play an important role in endocytosis and subsequent membrane trafficking by interacting with AP2 through KIAA0196 and KIAA1033.


Subject(s)
Colitis, Ulcerative/pathology , Endocytosis , Tacrolimus Binding Proteins/metabolism , Transcription Factor AP-2/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism , Cell Line , Cell Line, Tumor , Chromatography, Liquid/methods , Colorectal Neoplasms/pathology , Humans , Macrophages/metabolism , Mass Spectrometry/methods , Models, Biological , Proteins/metabolism , Proteomics/methods , Wiskott-Aldrich Syndrome Protein/metabolism
20.
Biochem Biophys Res Commun ; 391(1): 783-8, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19944670

ABSTRACT

ADAMTS13 cleaves multimeric von Willebrand factor (VWF) to regulate VWF-mediated thrombus formation. To search ADAMTS13 peptide sequences binding to VWF, a lambda-phage library expressing various peptides of ADAMTS13 on the surface was screened using VWF either immobilized or in solution under static condition. By the first screening, peptides sharing the C-terminus of spacer domain from Arg(670) to Gln(684) (epitope-A) were selected. To explore additional sites, peptide sequences from the first screening were synthesized and added to the second screening. Consequently, Pro(618) to Glu(641) (epitope-B) in the middle of spacer domain was obtained from immobilized VWF condition. Synthetic epitope-B peptide inhibited the cleavage of VWF by ADAMTS13, while the synthetic epitope-A peptide did not as efficiently as epitope-B. Elimination of four amino acids from either sides of epitope-B terminus markedly reduced the inhibitory effect. These two sites in the spacer domain may play significant roles in binding to VWF.


Subject(s)
ADAM Proteins/metabolism , von Willebrand Factor/metabolism , ADAM Proteins/genetics , ADAMTS13 Protein , Amino Acid Sequence , Humans , Immobilized Proteins/genetics , Immobilized Proteins/metabolism , Molecular Sequence Data , Peptide Fragments/genetics , Peptide Fragments/metabolism , Peptide Library , Protein Binding , Protein Structure, Tertiary , von Willebrand Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...