Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Eur J Cell Biol ; 103(2): 151418, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729083

ABSTRACT

The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.

2.
Nature ; 628(8008): 604-611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538784

ABSTRACT

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Subject(s)
Calcitonin Gene-Related Peptide , Macrophages , Neutrophils , Nociceptors , Wound Healing , Animals , Mice , Autocrine Communication , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Efferocytosis , Macrophages/cytology , Macrophages/metabolism , Monocytes/cytology , Monocytes/metabolism , Muscle, Skeletal , NAV1.8 Voltage-Gated Sodium Channel/deficiency , NAV1.8 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Nociceptors/metabolism , Paracrine Communication , Peripheral Nervous System Diseases/complications , Receptor Activity-Modifying Protein 1/metabolism , Regeneration/drug effects , Skin , Thrombospondin 1/metabolism , Wound Healing/drug effects , Wound Healing/immunology , Humans , Male , Female
3.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 79(12): 1344-1351, 2023 Dec 20.
Article in Japanese | MEDLINE | ID: mdl-37880079

ABSTRACT

PURPOSE: The aim of this study was to compare the physical properties of small focal spot imaging with deep learning reconstruction (DLR) and small or large focal spot imaging with hybrid iterative reconstruction (IR) in chest-abdominal plain computed tomography. METHOD: In small focal spot imaging using DLR and hybrid IR, tube currents were set at 350 mA. For the large focal spot imaging using hybrid IR, the tube current was set at 360, 400, 450, and 500 mA. The spatial frequencies with 50% task transfer function (TTF) for delrin and acrylic were calculated to compare spatial resolution properties for lung and soft tissue in the chest. Additionally, the low-contrast object-specific contrast-to-noise ratio (CNRLO) was measured as noise property was measured for a 7-mm module with a CT value contrast of 10 HU in the abdomen. RESULT: Spatial frequencies with 50% TTF for delrin and acrylic were found to be greater in small focal spot imaging using DLR compared to those in small and large focal spot imaging using hybrid IR. Moreover, the CNRLO obtained from small focal spot imaging with DLR was also nearly equivalent to that of large focal spot imaging with hybrid IR at tube currents of 450 and 500 mA. CONCLUSION: In chest-abdominal plain computed tomography, small focal spot imaging with DLR has been demonstrated to exhibit greater spatial resolution properties compared to small and large focal spot imaging with hybrid IR, with equivalent or better noise performance.


Subject(s)
Deep Learning , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms , Tomography, X-Ray Computed/methods , Abdomen/diagnostic imaging
4.
J Biochem ; 174(4): 305-315, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37461198

ABSTRACT

Pain and mechanical stimulation are thought to be alarm systems that alert the brain to physical abnormalities. When we experience unpleasant feelings in infected or traumatized tissues, our awareness is directed to the afflicted region, prompting activities such as resting or licking the tissue. Despite extensive research into the molecular biology of nociceptors, it was unclear whether their role was limited to the generation and transmission of unpleasant feelings or whether they actively modulate the pathogenesis of infected or traumatized tissues. Recently, it has become clear how the sensory and immune systems interact with one another and share similar receptors and ligands to modify the pathogenesis of various diseases. In this paper, we summarize the mechanisms of crosstalk between the sensory and immune systems and the impact of this new interdisciplinary field, which should be dubbed 'senso-immunology,' on medical science.


Subject(s)
Nociceptors , Pain , Humans , Nociceptors/physiology
5.
Keio J Med ; 72(3): 77-87, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37460327

ABSTRACT

The sensory and immune systems have been studied independently for a long time, whereas the interaction between the two has received little attention. We have carried out research to understand the interaction between the sensory and immune systems and have found that inflammation and bone destruction caused by fungal infection are suppressed by nociceptors. Furthermore, we have elucidated the molecular mechanism whereby fungal receptors are expressed on nociceptors and skin epithelium, how they cooperate to generate fungal pain, and how colitis and bone metabolism are regulated by mechanosensors expressed on the gut epithelium. Recently, we found that nociceptors prevent septic death by inhibiting microglia via nociceptor-derived hormones. This review summarizes our current state of knowledge on pain biology and outlines the mechanisms whereby pain and immunity interact. Our findings indicate that the sensory and immune systems share a variety of molecules and interact with each other to regulate our pathological and homeostatic conditions. This prompted us to advocate the interdisciplinary science named "senso-immunology," and this emerging field is expected to generate new ideas in both physiology and immunology, leading to the development of novel drugs to treat pain and inflammation.


Subject(s)
Nociceptors , Pain , Humans , Pain/metabolism , Nociceptors/metabolism , Immune System/metabolism , Inflammation/metabolism , Skin/metabolism
6.
Cell Rep ; 38(10): 110462, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263589

ABSTRACT

Nociceptors can fine-tune local or systemic immunity, but the mechanisms of nociceptive modulation in endotoxic death remain largely unknown. Here, we identified C-type lectin Reg3γ as a nociceptor-enriched hormone that protects the host from endotoxic death. During endotoxemia, nociceptor-derived Reg3γ penetrates the brain and suppresses the expression of microglial indoleamine dioxygenase 1, a critical enzyme of the kynurenine pathway, via the Extl3-Bcl10 axis. Endotoxin-administered nociceptor-null mice and nociceptor-specific Reg3γ-deficient mice exhibit a high mortality rate accompanied by decreased brain HK1 phosphorylation and ATP production despite normal peripheral inflammation. Such metabolic arrest is only observed in the brain, and aberrant production of brain quinolinic acid, a neurotoxic metabolite of the kynurenine pathway, causes HK1 suppression. Strikingly, the central administration of Reg3γ protects mice from endotoxic death by enhancing brain ATP production. By identifying nociceptor-derived Reg3γ as a microglia-targeted hormone, this study provides insights into the understanding of tolerance to endotoxic death.


Subject(s)
Kynurenine , Microglia , Pancreatitis-Associated Proteins/metabolism , Adenosine Triphosphate/metabolism , Animals , Endotoxins/metabolism , Hormones/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Mice , Microglia/metabolism , N-Acetylglucosaminyltransferases/metabolism , Nociceptors/metabolism
7.
FEBS J ; 289(14): 4132-4145, 2022 07.
Article in English | MEDLINE | ID: mdl-33780155

ABSTRACT

Understanding the molecular mechanisms of nociception has recently grown impressively. Nociception is mediated by mechanical, chemical, or microbial stimuli that evoke unpleasant feelings, alerting the host of the risk of tissue damage. Such diverse arrays of noxious stimuli trigger various escape reactions, usually altering immune homeostasis. Notably, nociceptors can recognize cytokines or pathogens via sensory molecules or innate immune receptors, participating in immune responses. Accumulating evidence suggests that activated nociceptors produce various humoral factors that affect the immune system and act like endocrine/paracrine signals. Thus, understanding the interplay between the nociceptive and immune systems may open new avenues for the development of an interdisciplinary research field, hereinafter referred to as 'senso-immunology'. This review will discuss the physiological relevance of the senso-immune system in the host defense context, focusing on how senso-immune research might yield novel treatments to cure pain and inflammation.


Subject(s)
Nociception , Nociceptors , Cell Physiological Phenomena , Humans , Immune System , Nociceptors/physiology , Pain
8.
Front Immunol ; 12: 786511, 2021.
Article in English | MEDLINE | ID: mdl-35069559

ABSTRACT

Complex regional pain syndrome (CRPS) is a chronic pain syndrome that occurs in tissue injuries as the result of surgery, trauma, or ischemia. The clinical features of this severely painful condition include redness and swelling of the affected skin. Intriguingly, it was recently suggested that transient receptor potential ankyrin 1 (TRPA1) is involved in chronic post-ischemia pain, a CRPS model. TRPA1 is a non-selective cation channel expressed in calcitonin gene-related peptide (CGRP)-positive primary nociceptors that becomes highly activated in ischemic conditions, leading to the generation of pain. In this review, we summarize the history of TRPA1 and its involvement in pain sensation, inflammation, and CRPS. Furthermore, bone atrophy is also thought to be a characteristic clinical sign of CRPS. The altered bone microstructure of CRPS patients is thought to be caused by aggravated bone resorption via enhanced osteoclast differentiation and activation. Although TRPA1 could be a target for pain treatment in CRPS patients, we also discuss the paradoxical situation in this review. Nociceptor activation decreases the risk of bone destruction via CGRP secretion from free nerve endings. Thus, TRPA1 inhibition could cause severe bone atrophy. However, the suitable therapeutic strategy is controversial because the pathologic mechanisms of bone atrophy in CRPS are unclear. Therefore, we propose focusing on the remission of abnormal bone turnover observed in CRPS using a recently developed concept: senso-immunology.


Subject(s)
Calcitonin Gene-Related Peptide/immunology , Complex Regional Pain Syndromes/immunology , Complex Regional Pain Syndromes/therapy , Pain Perception , TRPA1 Cation Channel/immunology , Animals , Complex Regional Pain Syndromes/pathology , Humans
9.
Cell Rep ; 32(2): 107906, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32668247

ABSTRACT

Zinc finger protein St18 was initially reported as candidate tumor suppressor gene, and also suggested that fibroblast St18 positively regulates NF-κB activation. Despite the pleiotropic functions of St18, little is known about its roles in macrophages. Here, we report that myeloid St18 is a potent inhibitor of VEGF-A. Mice lacking St18 in myeloid lineages exhibit increased retinal vasculature with enhanced serum VEGF-A concentrations. Despite the normal activation of NF-κB target genes, these mice are highly susceptible to LPS-induced shock, polymicrobial sepsis, and experimental colitis, accompanied by enhanced vascular and intestinal leakage. Pharmacological inhibition of VEGF signaling rescued the high mortality rate of myeloid-specific St18-deficient mice in response to inflammation. Mechanistically, St18 directly binds to Sp1 and attenuates its activity, leading to the suppression of Sp1 target gene VEGF-A. Using mouse genetic and pharmacological models, we reveal myeloid St18 as a critical septic death protector.


Subject(s)
Macrophages/metabolism , Repressor Proteins/metabolism , Sepsis/pathology , Sepsis/prevention & control , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Zinc Fingers , Animals , Cecum/pathology , Cell Lineage , Colitis/complications , Colitis/pathology , Dextran Sulfate , Disease Susceptibility , Gene Expression Regulation , Inflammation/pathology , Ligation , Lipopolysaccharides , Macrophages/pathology , Mice , Mice, Inbred C57BL , Myeloid Cells/metabolism , NF-kappa B/metabolism , Punctures , RAW 264.7 Cells , Repressor Proteins/deficiency , Sepsis/complications , Shock, Septic/microbiology , Shock, Septic/pathology , Signal Transduction , Sp1 Transcription Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism
10.
Cell ; 182(3): 609-624.e21, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32640190

ABSTRACT

Gastrointestinal enterochromaffin cells regulate bone and gut homeostasis via serotonin (5-hydroxytryptamine [5-HT]) production. A recent report suggested that gut microbes regulate 5-HT levels; however, the precise underlying molecular mechanisms are unexplored. Here, we reveal that the cation channel Piezo1 in the gut acts as a sensor of single-stranded RNA (ssRNA) governing 5-HT production. Intestinal epithelium-specific deletion of mouse Piezo1 profoundly disturbed gut peristalsis, impeded experimental colitis, and suppressed serum 5-HT levels. Because of systemic 5-HT deficiency, conditional knockout of Piezo1 increased bone formation. Notably, fecal ssRNA was identified as a natural Piezo1 ligand, and ssRNA-stimulated 5-HT synthesis from the gut was evoked in a MyD88/TRIF-independent manner. Colonic infusion of RNase A suppressed gut motility and increased bone mass. These findings suggest gut ssRNA as a master determinant of systemic 5-HT levels, indicating the ssRNA-Piezo1 axis as a potential prophylactic target for treatment of bone and gut disorders.


Subject(s)
Bone and Bones/metabolism , Colon/metabolism , Gastrointestinal Motility/genetics , Ion Channels/metabolism , RNA/metabolism , Serotonin/biosynthesis , Serotonin/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Bone and Bones/cytology , Calcium/metabolism , Colitis/genetics , Colitis/metabolism , Colitis/prevention & control , Colon/physiology , Feces/chemistry , Female , Gastrointestinal Motility/physiology , HEK293 Cells , Humans , Immunohistochemistry , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Ion Channels/genetics , Ligands , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota/drug effects , Myeloid Differentiation Factor 88/metabolism , Osteoclasts/metabolism , Pyrazines/pharmacology , RNA/pharmacology , Ribonuclease, Pancreatic/administration & dosage , Serotonin/blood , Serotonin/deficiency , Thiadiazoles/pharmacology
11.
Sci Adv ; 6(24): eaba7602, 2020 06.
Article in English | MEDLINE | ID: mdl-32582857

ABSTRACT

Although growth factors (GFs) are key molecules for regenerative medicine, their use has been limited by issues associated with suboptimal delivery systems and incomplete understanding of their signaling dynamics. Here, we explored how proinflammatory signals affect GF regenerative potential. Using bone regeneration in mouse, we found that the regenerative capacity of two clinically relevant GFs (BMP-2 and PDGF-BB) is impaired by interleukin-1 receptor (IL-1R1). Mechanistically, IL-1R1 activation in bone-forming cells desensitizes them to GFs and accelerates senescence. Moreover, administration of the GFs triggers IL-1 release by macrophages. To provide localized and sustained IL-1R1 inhibition, we engineered IL-1R antagonist (IL-1Ra) to bind the extracellular matrix (ECM) very strongly and demonstrate that codelivering GFs with ECM-binding IL-1Ra induces superior regeneration. Thus, we highlight that GF regenerative activity is hindered by proinflammatory signals, and GF-based therapies should integrate immunomodulation. Particularly, ECM-binding IL-1Ra holds clinical translational potential by enhancing efficacy of GF therapies.

12.
Nutr J ; 19(1): 2, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31918726

ABSTRACT

BACKGROUND: Mental health has become a major public health issue worldwide. Biological and epidemiological studies suggest diet has a role in the prevention or cure of mental disorders. However, further research is required to elucidate the relationship between diet and mental health. This study aimed to investigate associations between dietary intake of nutrients (macronutrients, vitamins, calcium, and fatty acids) and food groups (fish, meat and chicken, dairy products, and vegetables) and mental health among middle-aged Japanese in cross-sectional and prospective studies. METHODS: In total, 9298 men and women that participated in two areas of the Japan Multi-Institutional Collaborative Cohort Study were eligible for analysis at the baseline (cross-sectional) survey. Of these, 4701 participants were followed for about 5 years and included in the follow-up (prospective) analysis. The 12-item General Health Questionnaire (GHQ) was used to assess participants' general mental health status over the past several weeks. The average intake of 46 foods over the past year was assessed by a validated food frequency questionnaire. We also evaluated lifestyle and medical factors using a self-administered questionnaire. A cross-sectional logistic regression analysis was performed to estimate odds ratios for a GHQ score ≥ 4 (poor mental health) according to dietary intake of foods/nutrients at baseline. The prospective study used baseline dietary and lifestyle factors and GHQ scores at follow-up. RESULTS: The cross-sectional logistic regression analysis showed vegetables, protein, calcium, vitamin D, carotene and n-3 highly-polyunsaturated fatty acids were inversely associated with a GHQ score ≥ 4. On the other hand, mono-unsaturated fatty acids showed a positive association with higher GHQ score. The prospective logistic regression analysis found dairy products, calcium, vitamin B2, and saturated fatty acids were inversely correlated with a GHQ score ≥ 4. Calcium was associated with GHQ scores in both the cross-sectional and follow-up studies. In the follow-up study, the multivariable-adjusted odds ratio for a GHQ score ≥ 4 was 0.71 (95% confidence interval, 0.55-0.92) for the highest versus lowest quartiles of calorie-adjusted dietary calcium intake. CONCLUSION: Consuming particular nutrients and foods, especially calcium and dairy products, may lead to better mental health in Japanese adults.


Subject(s)
Diet/methods , Diet/statistics & numerical data , Health Surveys/methods , Health Surveys/statistics & numerical data , Mental Health/statistics & numerical data , Surveys and Questionnaires/statistics & numerical data , Adult , Aged , Cohort Studies , Cross-Sectional Studies , Female , Health Status , Humans , Japan , Male , Middle Aged , Prospective Studies
13.
Int J Mol Sci ; 20(14)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31336748

ABSTRACT

Receptor-type ion channels are critical for detection of noxious stimuli in primary sensory neurons. Transient receptor potential (TRP) channels mediate pain sensations and promote a variety of neuronal signals that elicit secondary neural functions (such as calcitonin gene-related peptide [CGRP] secretion), which are important for physiological functions throughout the body. In this review, we focus on the involvement of TRP channels in sensing acute pain, inflammatory pain, headache, migraine, pain due to fungal infections, and osteo-inflammation. Furthermore, action potentials mediated via interactions between TRP channels and the chloride channel, anoctamin 1 (ANO1), can also generate strong pain sensations in primary sensory neurons. Thus, we also discuss mechanisms that enhance neuronal excitation and are dependent on ANO1, and consider modulation of pain sensation from the perspective of both cation and anion dynamics.


Subject(s)
Anoctamin-1/metabolism , Neoplasm Proteins/metabolism , Pain Management , Pain/metabolism , Transient Receptor Potential Channels/metabolism , Animals , Anoctamin-1/genetics , Humans , Ion Channels/metabolism , Neoplasm Proteins/genetics , Pain/etiology , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Signal Transduction , Transient Receptor Potential Channels/genetics
14.
BMC Public Health ; 18(1): 1380, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30558565

ABSTRACT

BACKGROUND: Although self-rated health (SRH) independently predicts mortality, the biological background of this association remains unexplained. This study aimed to examine the association between SRH and serum high-sensitivity C-reactive protein (hsCRP) level. METHODS: Subjects were 899 participants aged 35-69 years (237 men and 662 women) in the Daiko Study, part of the Japan Multi-Institutional Collaborative Cohort Study. They were enrolled from 2008 to 2010. Of the subjects, 666 participated in a second survey 5 years later. Lifestyle factors and SRH were assessed using a self-administered questionnaire. Serum hsCRP level was measured using a latex-enhanced immunonephelometric assay. The association between SRH and serum hsCRP level was evaluated using a general linear model with covariates. We further longitudinally investigated whether higher serum hsCRP level at baseline predicts poor SRH after 5 years using an unconditional logistic regression model. RESULTS: A higher serum hsCRP level was significantly associated with poor SRH at baseline after adjusting for covariates (p for trend = 0.023). The age- and sex-adjusted odds ratio and 95% confidence interval (CI) for poor SRH after 5 years was 1.45 (95% CI: 0.76-2.78) for the highest tertile compared with the lowest tertile of serum hsCRP level at baseline with a significant linear trend (p for trend = 0.033), although the risk increase disappeared after adjustment for other covariates. CONCLUSIONS: The present study demonstrated that poor SRH is cross-sectionally associated with higher serum hsCRP level. However, the longitudinal data did not support the relationship between serum hsCRP level at baseline and future SRH. Further longitudinal studies that include data on mortality and multiple inflammatory markers are warranted to elucidate the possible role of low-grade inflammation in the association between SRH and mortality risk.


Subject(s)
C-Reactive Protein/metabolism , Diagnostic Self Evaluation , Adult , Aged , Cross-Sectional Studies , Female , Humans , Japan , Longitudinal Studies , Male , Middle Aged , Surveys and Questionnaires
15.
iScience ; 6: 306-318, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30240621

ABSTRACT

Candida albicans infection can cause skin, vulvar, or oral pain. Despite the obvious algesic activity of C. albicans, the molecular mechanisms of fungal nociception remain largely unknown. Here we show that the C. albicans-specific signaling pathway led to severe mechanical allodynia. We discovered that C. albicans-derived ß-glucan stimulated nociceptors depending on Dectin-1, and two pathways in inflammatory pain. The major pathway operates via the Dectin-1-mediated ATP-P2X3/P2X2/3 axis through intercellular relationships between keratinocytes and primary sensory neurons, which depends on the ATP transporter vesicular nucleotide transporter (VNUT). The other pathway operates via the Dectin-1-mediated PLC-TRPV1/TRPA1 axis in primary sensory neurons. Intriguingly, C. albicans-derived ß-glucan has the ability to enhance histamine-independent pruritus, and VNUT inhibitor clodronate can be used to treat unpleasant feelings induced by ß-glucan. Collectively, this is the first report to indicate that Dectin-1 and VNUT mediated innate sensory mechanisms that detect fungal infection.

16.
Adv Wound Care (New Rochelle) ; 7(7): 209-231, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29984112

ABSTRACT

Significance: The immune system plays a central role in orchestrating the tissue healing process. Hence, controlling the immune system to promote tissue repair and regeneration is an attractive approach when designing regenerative strategies. This review discusses the pathophysiology of both acute and chronic wounds and possible strategies to control the immune system to accelerate chronic wound closure and promote skin regeneration (scar-less healing) of acute wounds. Recent Advances: Recent studies have revealed the key roles of various immune cells and immune mediators in skin repair. Thus, immune components have been targeted to promote chronic wound repair or skin regeneration and several growth factors, cytokines, and biomaterials have shown promising results in animal models. However, these novel strategies are often struggling to meet efficacy standards in clinical trials, partly due to inadequate drug delivery systems and safety concerns. Critical Issues: Excess inflammation is a major culprit in the dysregulation of normal wound healing, and further limiting inflammation effectively reduces scarring. However, current knowledge is insufficient to efficiently control inflammation and specific immune cells. This is further complicated by inadequate drug delivery methods. Future Directions: Improving our understanding of the molecular pathways through which the immune system controls the wound healing process could facilitate the design of novel regenerative therapies. Additionally, better delivery systems may make current and future therapies more effective. To promote the entry of current regenerative strategies into clinical trials, more evidence on their safety, efficacy, and cost-effectiveness is also needed.

17.
Sci Immunol ; 2(12)2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28783657

ABSTRACT

Although malaria is a life-threatening disease with severe complications, most people develop partial immunity and suffer from mild symptoms. However, incomplete recovery from infection causes chronic illness, and little is known of the potential outcomes of this chronicity. We found that malaria causes bone loss and growth retardation as a result of chronic bone inflammation induced by Plasmodium products. Acute malaria infection severely suppresses bone homeostasis, but sustained accumulation of Plasmodium products in the bone marrow niche induces MyD88-dependent inflammatory responses in osteoclast and osteoblast precursors, leading to increased RANKL expression and overstimulation of osteoclastogenesis, favoring bone resorption. Infection with a mutant parasite with impaired hemoglobin digestion that produces little hemozoin, a major Plasmodium by-product, did not cause bone loss. Supplementation of alfacalcidol, a vitamin D3 analog, could prevent the bone loss. These results highlight the risk of bone loss in malaria-infected patients and the potential benefits of coupling bone therapy with antimalarial treatment.

18.
Proc Natl Acad Sci U S A ; 114(35): E7331-E7340, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28808017

ABSTRACT

The development of effective treatments against cancers is urgently needed, and the accumulation of CD8+ T cells within tumors is especially important for cancer prognosis. Although their mechanisms are still largely unknown, growing evidence has indicated that innate immune cells have important effects on cancer progression through the production of various cytokines. Here, we found that basic leucine zipper transcription factor ATF-like 2 (Batf2) has an antitumor effect. An s.c. inoculated tumor model produced fewer IL-12 p40+ macrophages and activated CD8+ T cells within the tumors of Batf2-/- mice compared with WT mice. In vitro studies also revealed that the IL-12 p40 expression was significantly lower in Batf2-/- macrophages following their stimulation by toll-like receptor ligands, such as R848. Additionally, we found that BATF2 interacts with p50/p65 and promotes IL-12 p40 expression. In conclusion, Batf2 has an antitumor effect through the up-regulation of IL-12 p40 in tumor-associated macrophages, which eventually induces CD8+ T-cell activation and accumulation within the tumor.


Subject(s)
Basic-Leucine Zipper Transcription Factors/physiology , Tumor Suppressor Proteins/physiology , Animals , Antineoplastic Agents/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/pharmacology , CD8-Positive T-Lymphocytes/metabolism , Gene Expression Regulation/genetics , Humans , Interleukin-12/metabolism , Interleukin-12/physiology , Macrophages/metabolism , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , NF-kappa B/metabolism , Protein Subunits/metabolism , RAW 264.7 Cells , Toll-Like Receptor 7/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/pharmacology , Up-Regulation
19.
Cell Rep ; 19(13): 2730-2742, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28658621

ABSTRACT

Candida albicans can enter skeletal tissue through a skin wound in an immunocompromised host or by contamination during orthopedic surgery. Such Candida osteomyelitis is accompanied by severe pain and bone destruction. It is established that nociceptor innervation occurs in skin and bone, but the mechanisms of nociceptive modulation in fungal inflammation remain unclear. In this study, we show that C. albicans stimulates Nav1.8-positive nociceptors via the ß-glucan receptor Dectin-1 to induce calcitonin gene-related peptide (CGRP). This induction of CGRP is independent of Bcl-10 or Malt-1 but dependent on transient receptor potential cation channel subfamily V member 1 (TRPV1)/transient receptor potential cation channel subfamily A member 1 (TRPA1) ion channels. Hindpaw ß-glucan injection after Nav1.8-positive nociceptor ablation or in TRPV1/TRPA1 deficiency showed dramatically increased osteoinflammation accompanied by impaired CGRP production. Strikingly, CGRP suppressed ß-glucan-induced inflammation and osteoclast multinucleation via direct suppression of nuclear factor-κB (NF-κB) p65 by the transcriptional repressor Jdp2 and inhibition of actin polymerization, respectively. These findings clearly suggest a role for Dectin-1-mediated sensocrine pathways in the resolution of fungal osteoinflammation.


Subject(s)
Candida albicans/immunology , Candidiasis/immunology , Inflammation/immunology , Nociceptors/immunology , Repressor Proteins/immunology , TRPV Cation Channels/immunology , Animals , Calcitonin Gene-Related Peptide/metabolism , Candidiasis/metabolism , Candidiasis/pathology , Female , Humans , Inflammation/microbiology , Mice , Repressor Proteins/metabolism , TRPV Cation Channels/metabolism
20.
Pharmacol Res ; 122: 46-52, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28576474

ABSTRACT

The netrin family of proteins are involved in axon guidance during central nervous system development. In vertebrates, two membrane bound forms and five secreted forms of netrin have been reported. In addition to their critical role in neural morphogenesis, a growing number of reports suggest that netrin family proteins also play a role in inflammatory conditions, angiogenesis, and tumorigenesis. In these processes, Unc5 and DCC family proteins serve as receptors of netrin proteins. Recently, it was reported that some netrin family proteins may be involved in the pathogenesis of skeletal diseases including osteoporosis and arthritis. For example, administration of secreted netrin family proteins such as netrin 1 and netrin 4 has prophylactic potential in pathogenic bone degradation in mice. However, netrin 1 blocking antibody also protects mice from inflammatory bone destruction. Therefore, netrin family proteins are involved in the regulation of bone homeostasis, but their bona fide roles in the skeletal system remain controversial. In this review, we discuss the osteo-innate-immune functions of the netrin family of proteins, and summarize their therapeutic potential.


Subject(s)
Arthritis/drug therapy , Arthritis/pathology , Bone and Bones/drug effects , Bone and Bones/pathology , Netrins/therapeutic use , Osteoporosis/drug therapy , Osteoporosis/pathology , Animals , Arthritis/immunology , Bone and Bones/immunology , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Netrins/immunology , Osteoclasts/drug effects , Osteoclasts/immunology , Osteoclasts/pathology , Osteoporosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...