Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(18): 15779-15785, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35571765

ABSTRACT

Preparing compounds containing the radioisotope 64Cu for use in positron emission tomography cancer diagnostics is an ongoing area of research. In this study, a highly efficient separation method to recover 64Cu generated by irradiating the target 64Ni with a proton beam was developed by employing a flow electrolysis cell (FE). This system consists of (1) applying a reduction potential for the selective adsorption of 64Cu from the target solution when dissolved in HCl and (2) recovering the 64Cu deposited onto the carbon working electrode by desorbing it from the FE during elution with 10 mmol/L HNO3, which applies an oxidation potential. The 64Cu was selectively eluted at approximately 30 min under a flow rate of 0.5 mL/min from the injection to recovery. The newly developed flow electrolysis system can separate the femtomolar level of ultratrace radioisotopes from the larger amount of target metals as an alternative to conventional column chromatography.

2.
Anal Chem ; 93(51): 17069-17075, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34910462

ABSTRACT

Short-lived radioactive metals are important tracers in clinical diagnosis. Radioactive metals for clinical use are produced from suitable target metals in cyclotrons. The trace amount of radioactive metal produced is contained in a relatively large amount of target metal. A rapid and effective method is required to isolate the radioactive metal. In the present study, selective complex formation followed by cation-exchange adsorption was performed in a continuous flow-based system. Ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) was selected as the ligand after simulation of the separation of radioactive Ga from the target (Zn). Selectively, the Ga-EDTA complex passed through the cation trap, while Zn2+ was trapped. This separation principle is opposite to that of typical solid-phase extraction, which captures the target ion. The proposed separation was performed in a flow-based system with a parallel, open-channel ion trap. The performance was optimized by altering the channel dimensions, channel-filling mesh, and flow rate. Finally, the target radioactive metal, Ga, was selectively and effectively (>99%) separated from a mixture of 50 fg Ga/L and 100 mg Zn/L. The concentration of Zn remaining in the Ga solution was 2.3 µg/L. The complexed Ga was converted to free Ga3+ by a simple UV irradiation method. The proposed method effectively and rapidly separates trace amounts of radioactive metals contained in larger amounts of target metals using a simple flow system that can be operated on site.


Subject(s)
Cyclotrons , Metals , Indicators and Reagents , Solid Phase Extraction
3.
Anal Chem ; 92(22): 14953-14958, 2020 11 17.
Article in English | MEDLINE | ID: mdl-32959650

ABSTRACT

Radioactive metals are applied in biochemistry, medical diagnosis such as positron emission tomography (PET), and cancer therapy. However, the activity of radioisotopes exponentially decreases with time; therefore, rapid and reliable probe preparation methods are strongly recommended. In the present study, electrodialytic radioactive metal ion handling is studied for counter ion conversion and in-line probe synthesis. Presently, counter ion conversion and probe synthesis are achieved by evaporative dryness and solution mixing, respectively. Evaporative dryness is time-consuming and is a possible process that can lead to loss of radioactive metal ions. Mixing of solutions for synthesis makes dilution and undesirable effects of counter ion on the synthesis. An optimized electrodialytic flow device can transfer a radioisotope, 64Cu2+, with high recovery from HCl matrices to HNO3 (∼100%). Matrices can also be transferred into acetic acid and citric acid, even though the concentration of the metal ion is at the picomolar level. The ion transfer can also be achieved with simultaneous counter ion conversion, complex synthesis, and enrichment. When the ligand was dissolved in an acceptor solution, the transferred metal ions from the donor were well mixed and formed a complex with the ligand in-line. The efficiency of the synthesis was ∼100% for 1.0 pM 64Cu. A relatively larger donor-to-acceptor flow rate can enrich the metal ion in the acceptor solution continuously. The flow rate ratio of 10 (donor/acceptor) can achieve 10 times enrichment. The present electrodialytic ion handling method can treat ultra-trace radioisotopes in a closed system. With this method, rapid, effective, and safe radioisotope treatments were achieved.


Subject(s)
Electrochemical Techniques/instrumentation , Metals/chemistry , Radioisotopes/chemistry , Hydrochloric Acid/chemistry , Indicators and Reagents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...