Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 120: 106635, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34891067

ABSTRACT

In this study, the effect of friction on the generation of dry-coupled Lamb waves is experimentally investigated. Recurrence analysis is performed to analyze the complex behavior of friction based dry-coupled Lamb waves. In particular, the effect of the normal force, which is necessary for a stronger dry-coupled Lamb wave generation and the friction, on the transmission of mechanical energy and determinism characteristics of Lamb waves are investigated. The results verify that larger friction coefficient and friction force are crucial for generation and propagation of strong Lamb waves supporting the fact that the main mechanism to transfer mechanical energy using dry-couplant is friction. The sensitivity of Lamb waves to the friction coefficient, highlights the importance of designing specific pads with respect to condition of the surface. Besides, the results show that the normal force and friction coefficient can change the determinism characteristics behavior of multimode Lamb waves. Furthermore, it is shown that the determinism value is sensitive to the friction coefficient and normal force. A similar trend is observed in the determinism values and friction coefficient. In general, a smaller friction coefficient indicates smaller determinism value. Additionally, it is shown that a normal load can change the behavior of a system, as observed from recurrence plots, owing to changes in the Lamb waves trajectories in the phase-space domain. In addition, it is shown that recurrence plots enable the detection of mode transitions in multimode Lamb waves. Recurrence analysis is a complementary tool to frequency domain methods for accurate analysis of multimode Lamb waves behavior.

2.
ACS Omega ; 4(25): 21242-21250, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31867518

ABSTRACT

Variable electronics are vital in tunable filters, transmitters, and receivers, among other applications. In addition, the ability to remotely tune soft capacitors, resistors, and inductors is important for applications in which the device is not accessible. In this paper, a uniform method of remotely tuning the characteristic properties of soft electronic units (i.e. inductance, capacitance, and resistance) is presented. In this method, magnetically actuated ferrofluid mixed with iron powder is dragged in a soft fluidic channel made of polydimethylsiloxane (PDMS) to tune the electrical properties of the component. The effects of position and quantity of the ferrofluid and iron powder are studied over a range of frequencies, and the changes in inductance, capacitance, resistance, quality factor, and self-resonance frequency are reported accordingly. The position plays a bigger role in changing inductance, capacitance, and resistance. With the proposed design, the inductance can be changed by 20.9% from 3.31 µH for planar inductors and 23% from 0.44 µH for axial inductors. In addition, the capacitance of capacitors and impedance of resistors can be changed by 12.7% from 2.854 pF and 185.3% from 0.353 kΩ, respectively. Furthermore, the changes in the inductance, capacitance, and resistance follow "quasi-linear profiles" with the input during position and quantity effect experiments.

3.
RSC Adv ; 9(22): 12572-12579, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-35515864

ABSTRACT

This study discusses the role and function of helical design as it relates to slippage during translation of a vehicle in glass bead media. We show discrete element method (DEM) and multi-body dynamics (MBD) simulations and experiments of a double-helix Archimedes screw propelled vehicle traveling in a bed of soda-lime glass beads. Utilizing granular parameters from the literature and a reduced Young's modulus, we validate the set of granular parameters against experiments. The results suggest that MBD-DEM provides reliable dynamic velocity estimates. We provide the glass, ABS, and glass-ABS simulation parameters used to obtain these results. We also examine recently developed granular scaling laws for wheels applied to these shear-driven vehicles under three different simulated gravities. The results indicate that the system obeys gravity granular scaling laws for constant slip conditions but is limited in each gravity regime when slip begins to increase.

4.
Langmuir ; 31(37): 10119-24, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26322396

ABSTRACT

Optimal fiber designs for the maximal pull-off force have been indispensable for increasing the attachment performance of recently introduced gecko-inspired reversible micro/nanofibrillar adhesives. There are several theoretical studies on such optimal designs; however, due to the lack of three-dimensional (3D) fabrication techniques that can fabricate such optimal designs in 3D, there have not been many experimental investigations on this challenge. In this study, we benefitted from recent advances in two-photon lithography techniques to fabricate mushroomlike polyurethane elastomer fibers with different aspect ratios of tip to stalk diameter (ß) and tip wedge angles (θ) to investigate the effect of these two parameters on the pull-off force. We found similar trends to those predicted theoretically. We found that ß has an impact on the slope of the force-displacement curve while both ß and θ play a role in the stress distribution and crack propagation. We found that these effects are coupled and the optimal set of parameters also depends on the fiber material. This is the first experimental verification of such optimal designs proposed for mushroomlike microfibers. This experimental approach could be used to evaluate a wide range of complex microstructured adhesive designs suggested in the literature and optimize them.

5.
Science ; 346(6206): 224-9, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25301625

ABSTRACT

Limbless organisms such as snakes can navigate nearly all terrain. In particular, desert-dwelling sidewinder rattlesnakes (Crotalus cerastes) operate effectively on inclined granular media (such as sand dunes) that induce failure in field-tested limbless robots through slipping and pitching. Our laboratory experiments reveal that as granular incline angle increases, sidewinder rattlesnakes increase the length of their body in contact with the sand. Implementing this strategy in a physical robot model of the snake enables the device to ascend sandy slopes close to the angle of maximum slope stability. Plate drag experiments demonstrate that granular yield stresses decrease with increasing incline angle. Together, these three approaches demonstrate how sidewinding with contact-length control mitigates failure on granular media.


Subject(s)
Crotalus/anatomy & histology , Crotalus/physiology , Locomotion , Robotics/instrumentation , Silicon Dioxide , Animals , Body Size , Surface Properties
6.
J R Soc Interface ; 10(84): 20130188, 2013 Jul 06.
Article in English | MEDLINE | ID: mdl-23635494

ABSTRACT

In rectilinear locomotion, snakes propel themselves using unidirectional travelling waves of muscular contraction, in a style similar to earthworms. In this combined experimental and theoretical study, we film rectilinear locomotion of three species of snakes, including red-tailed boa constrictors, Dumeril's boas and Gaboon vipers. The kinematics of a snake's extension-contraction travelling wave are characterized by wave frequency, amplitude and speed. We find wave frequency increases with increasing body size, an opposite trend than that for legged animals. We predict body speed with 73-97% accuracy using a mathematical model of a one-dimensional n-linked crawler that uses friction as the dominant propulsive force. We apply our model to show snakes have optimal wave frequencies: higher values increase Froude number causing the snake to slip; smaller values decrease thrust and so body speed. Other choices of kinematic variables, such as wave amplitude, are suboptimal and appear to be limited by anatomical constraints. Our model also shows that local body lifting increases a snake's speed by 31 per cent, demonstrating that rectilinear locomotion benefits from vertical motion similar to walking.


Subject(s)
Gait/physiology , Locomotion/physiology , Models, Biological , Oligochaeta/physiology , Snakes/physiology , Animals , Biomechanical Phenomena , Body Size , Friction , Species Specificity
7.
J R Soc Interface ; 9(76): 3067-80, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-22728386

ABSTRACT

Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability.


Subject(s)
Friction/physiology , Gait/physiology , Locomotion/physiology , Models, Biological , Snakes/physiology , Analysis of Variance , Animals , Biomechanical Phenomena , Video Recording
8.
Acta Med Iran ; 49(4): 225-32, 2011.
Article in English | MEDLINE | ID: mdl-21713732

ABSTRACT

The typical features of eccentric exercise-induced muscle damage is prolonged loss of muscle strength and the most rapid structural change in the fibers is loss of immunostaining for the intermediate filament protein, desmin. In this study isolated perfused rat muscle was used to examine the direct effect of temperature changes on the eccentric contraction-induced force and desmin loss. The left medial gastrocnemius muscle was separated and the entire lower limb was transferred into a prewarmed (35°C) organ bath. Temperature was adjusted to 31 or 39°C during and after eccentric contractions. Maximal isometric force and desmin loss were measured after 15 isometric or eccentric contractions. According to our data, organ bath temperature changes during or after eccentric contractions had no significant effect on force loss. However, a strong correlation between desmin loss and temperature changes during (r = 0.886, P< 0.05) and a weak correlation between desmin loss and temperature changes after (r= 0.699, P<0.05) eccentric contractions was observed. Our results suggest that cooling during eccentric contractions may decrease desmin loss but temperature changes after eccentric contractions have no effect on desmin loss.


Subject(s)
Desmin/metabolism , Muscle Contraction , Animals , Male , Rats , Rats, Sprague-Dawley , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...