Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; : OF1-OF13, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904222

ABSTRACT

KRAS is the most frequently mutated oncogene in human cancer and facilitates uncontrolled growth through hyperactivation of the receptor tyrosine kinase (RTK)/mitogen-activated protein kinase (MAPK) pathway. The Son of Sevenless homolog 1 (SOS1) protein functions as a guanine nucleotide exchange factor (GEF) for the RAS subfamily of small GTPases and represents a druggable target in the pathway. Using a structure-based drug discovery approach, MRTX0902 was identified as a selective and potent SOS1 inhibitor that disrupts the KRAS:SOS1 protein-protein interaction to prevent SOS1-mediated nucleotide exchange on KRAS and translates into an anti-proliferative effect in cancer cell lines with genetic alterations of the KRAS-MAPK pathway. MRTX0902 augmented the antitumor activity of the KRAS G12C inhibitor adagrasib when dosed in combination in eight out of 12 KRAS G12C-mutant human non-small cell lung cancer and colorectal cancer xenograft models. Pharmacogenomic profiling in preclinical models identified cell cycle genes and the SOS2 homolog as genetic co-dependencies and implicated tumor suppressor genes (NF1 and PTEN) in resistance following combination treatment. Lastly, combined vertical inhibition of RTK/MAPK pathway signaling by MRTX0902 with inhibitors of EGFR or RAF/MEK led to greater downregulation of pathway signaling and improved antitumor responses in KRAS-MAPK pathway-mutant models. These studies demonstrate the potential clinical application of dual inhibition of SOS1 and KRAS G12C and additional SOS1 combination strategies that will aide in the understanding of SOS1 and RTK/MAPK biology in targeted cancer therapy.

2.
Mol Cancer Ther ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641404

ABSTRACT

KRAS is the most frequently mutated oncogene in human cancer and facilitates uncontrolled growth through hyperactivation of the RTK/MAPK pathway. The Son of Sevenless homolog 1 (SOS1) protein functions as a guanine nucleotide exchange factor (GEF) for the RAS subfamily of small GTPases and represents a druggable target in the pathway. Using a structure-based drug discovery approach, MRTX0902 was identified as a selective and potent SOS1 inhibitor that disrupts the KRAS:SOS1 protein-protein interaction to prevent SOS1-mediated nucleotide exchange on KRAS and translates into an anti-proliferative effect in cancer cell lines with genetic alterations of the KRAS-MAPK pathway. MRTX0902 augmented the antitumor activity of the KRAS G12C inhibitor adagrasib when dosed in combination in eight out of twelve KRAS G12C-mutant human non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) xenograft models. Pharmacogenomic profiling in preclinical models identified cell cycle genes and the SOS2 homolog as genetic co-dependencies and implicated tumor suppressor genes (NF1, PTEN) in resistance following combination treatment. Lastly, combined vertical inhibition of RTK/MAPK pathway signaling by MRTX0902 with inhibitors of EGFR or RAF/MEK led to greater downregulation of pathway signaling and improved antitumor responses in KRAS-MAPK pathway-mutant models. These studies demonstrate the potential clinical application of dual inhibition of SOS1 and KRAS G12C and additional SOS1 combination strategies that will aide in the understanding of SOS1 and RTK/MAPK biology in targeted cancer therapy.

3.
J Med Chem ; 67(6): 4936-4949, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38477582

ABSTRACT

The H1047R mutation of PIK3CA is highly prevalent in breast cancers and other solid tumors. Selectively targeting PI3KαH1047R over PI3KαWT is crucial due to the role that PI3KαWT plays in normal cellular processes, including glucose homeostasis. Currently, only one PI3KαH1047R-selective inhibitor has progressed into clinical trials, while three pan mutant (H1047R, H1047L, H1047Y, E542K, and E545K) selective PI3Kα inhibitors have also reached the clinical stage. Herein, we report the design and discovery of a series of pyridopyrimidinones that inhibit PI3KαH1047R with high selectivity over PI3KαWT, resulting in the discovery of compound 17. When dosed in the HCC1954 tumor model in mice, 17 provided tumor regressions and a clear pharmacodynamic response. X-ray cocrystal structures from several PI3Kα inhibitors were obtained, revealing three distinct binding modes within PI3KαH1047R including a previously reported cryptic pocket in the C-terminus of the kinase domain wherein we observe a ligand-induced interaction with Arg1047.


Subject(s)
Antineoplastic Agents , Neoplasms , Mice , Animals , Antineoplastic Agents/chemistry , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Neoplasms/drug therapy , Mutation , Class I Phosphatidylinositol 3-Kinases/therapeutic use
4.
J Org Chem ; 89(6): 3875-3882, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38422508

ABSTRACT

Chiral amine synthesis remains a significant challenge in accelerating the design cycle of drug discovery programs. A zirconium hydride, due to its high oxophilicity and lower reactivity, gave highly chemo- and stereoselective reductions of sulfinyl ketimines. The development of this zirconocene-mediated reduction helped to accelerate our drug discovery efforts and is applicable to several motifs commonly used in medicinal chemistry. Computational investigation supported a cyclic half-chair transition state to rationalize the high selectivity in benzyl systems.


Subject(s)
Organometallic Compounds , Zirconium , Chemistry, Pharmaceutical , Amines
5.
J Med Chem ; 67(1): 774-781, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38156904

ABSTRACT

SOS1 and SOS2 are guanine nucleotide exchange factors that mediate RTK-stimulated RAS activation. Selective SOS1:KRAS PPI inhibitors are currently under clinical investigation, whereas there are no reports to date of SOS2:KRAS PPI inhibitors. SOS2 activity is implicated in MAPK rebound when divergent SOS1 mutant cell lines are treated with the SOS1 inhibitor BI-3406; therefore, SOS2:KRAS inhibitors are of therapeutic interest. In this report, we detail a fragment-based screening strategy to identify X-ray cocrystal structures of five diverse fragment hits bound to SOS2.


Subject(s)
Furans , Guanine Nucleotide Exchange Factors , Proto-Oncogene Proteins p21(ras) , Quinazolines , X-Rays , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Cell Line , SOS1 Protein/metabolism
6.
ACS Med Chem Lett ; 14(11): 1544-1550, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37970587

ABSTRACT

The mTOR kinase regulates a variety of critical cellular processes and has become a target for the treatment of various cancers. Using a combination of property-based drug design and Free-Wilson analysis, we further optimized a series of selective mTOR inhibitors based on the (S)-6a-methyl-6a,7,9,10-tetrahydro[1,4]oxazino[3,4-h]pteridin-6(5H)-one scaffold. Our efforts resulted in 14c, which showed similar in vivo efficacy compared to previous lead 1 at 1/15 the dose, a result of its improved drug-like properties.

7.
Cancer Discov ; 13(11): 2412-2431, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37552839

ABSTRACT

Previous studies implicated protein arginine methyltransferase 5 (PRMT5) as a synthetic lethal target for MTAP-deleted (MTAP del) cancers; however, the pharmacologic characterization of small-molecule inhibitors that recapitulate the synthetic lethal phenotype has not been described. MRTX1719 selectively inhibited PRMT5 in the presence of MTA, which is elevated in MTAP del cancers, and inhibited PRMT5-dependent activity and cell viability with >70-fold selecti-vity in HCT116 MTAP del compared with HCT116 MTAP wild-type (WT) cells. MRTX1719 demonstrated dose-dependent antitumor activity and inhibition of PRMT5-dependent SDMA modification in MTAP del tumors. In contrast, MRTX1719 demonstrated minimal effects on SDMA and viability in MTAP WT tumor xenografts or hematopoietic cells. MRTX1719 demonstrated marked antitumor activity across a panel of xenograft models at well-tolerated doses. Early signs of clinical activity were observed including objective responses in patients with MTAP del melanoma, gallbladder adenocarcinoma, mesothelioma, non-small cell lung cancer, and malignant peripheral nerve sheath tumors from the phase I/II study. SIGNIFICANCE: PRMT5 was identified as a synthetic lethal target for MTAP del cancers; however, previous PRMT5 inhibitors do not selectively target this genotype. The differentiated binding mode of MRTX1719 leverages the elevated MTA in MTAP del cancers and represents a promising therapy for the ∼10% of patients with cancer with this biomarker. See related commentary by Mulvaney, p. 2310. This article is featured in Selected Articles from This Issue, p. 2293.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Cell Line, Tumor , Synthetic Lethal Mutations , Enzyme Inhibitors/pharmacology , Protein-Arginine N-Methyltransferases
8.
Pediatr Crit Care Med ; 24(2): 177-179, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36661424
9.
RSC Med Chem ; 13(12): 1549-1564, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36545438

ABSTRACT

Here we describe the early stages of a fragment-based lead discovery (FBLD) project for a recently elucidated synthetic lethal target, the PRMT5/MTA complex, for the treatment of MTAP-deleted cancers. Starting with five fragment/PRMT5/MTA X-ray co-crystal structures, we employed a two-phase fragment elaboration process encompassing optimization of fragment hits and subsequent fragment growth to increase potency, assess synthetic tractability, and enable structure-based drug design. Two lead series were identified, one of which led to the discovery of the clinical candidate MRTX1719.

10.
Nat Med ; 28(10): 2171-2182, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36216931

ABSTRACT

Recent progress in targeting KRASG12C has provided both insight and inspiration for targeting alternative KRAS mutants. In this study, we evaluated the mechanism of action and anti-tumor efficacy of MRTX1133, a potent, selective and non-covalent KRASG12D inhibitor. MRTX1133 demonstrated a high-affinity interaction with GDP-loaded KRASG12D with KD and IC50 values of ~0.2 pM and <2 nM, respectively, and ~700-fold selectivity for binding to KRASG12D as compared to KRASWT. MRTX1133 also demonstrated potent inhibition of activated KRASG12D based on biochemical and co-crystal structural analyses. MRTX1133 inhibited ERK1/2 phosphorylation and cell viability in KRASG12D-mutant cell lines, with median IC50 values of ~5 nM, and demonstrated >1,000-fold selectivity compared to KRASWT cell lines. MRTX1133 exhibited dose-dependent inhibition of KRAS-mediated signal transduction and marked tumor regression (≥30%) in a subset of KRASG12D-mutant cell-line-derived and patient-derived xenograft models, including eight of 11 (73%) pancreatic ductal adenocarcinoma (PDAC) models. Pharmacological and CRISPR-based screens demonstrated that co-targeting KRASG12D with putative feedback or bypass pathways, including EGFR or PI3Kα, led to enhanced anti-tumor activity. Together, these data indicate the feasibility of selectively targeting KRAS mutants with non-covalent, high-affinity small molecules and illustrate the therapeutic susceptibility and broad dependence of KRASG12D mutation-positive tumors on mutant KRAS for tumor cell growth and survival.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , ErbB Receptors/metabolism , Humans , Mutation/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
11.
ACS Omega ; 7(36): 32062-32067, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36120049

ABSTRACT

With renewed interest in atropisomerism of drug molecules, efficient methods to experimentally determine torsion rotational energy barriers are needed. Here, we describe use of the chiral phosphoric acid solvating agent (+)-TiPSY to resolve the signals of atropisomers in 19F NMR and to use the data to study the kinetics of racemization and determine the rotational energy barrier of clinical compound MRTX1719. This method is complimentary to traditional chiral high-performance liquid chromatography (HPLC) and enhances the toolkit for chiral analysis techniques.

12.
Bioorg Med Chem ; 71: 116947, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35926325

ABSTRACT

MRTX1719 is an inhibitor of the PRMT5/MTA complex and recently entered clinical trials for the treatment of MTAP-deleted cancers. MRTX1719 is a class 3 atropisomeric compound that requires a chiral synthesis or a chiral separation step in its preparation. Here, we report the SAR and medicinal chemistry design strategy, supported by structural insights from X-ray crystallography, to discover a class 1 atropisomeric compound from the same series that does not require a chiral synthesis or a chiral separation step in its preparation.


Subject(s)
Enzyme Inhibitors , Neoplasms , Phthalazines , Humans , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Phthalazines/pharmacology , Protein-Arginine N-Methyltransferases
13.
J Med Chem ; 65(14): 9678-9690, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35833726

ABSTRACT

SOS1 is one of the major guanine nucleotide exchange factors that regulates the ability of KRAS to cycle through its "on" and "off" states. Disrupting the SOS1:KRASG12C protein-protein interaction (PPI) can increase the proportion of GDP-loaded KRASG12C, providing a strong mechanistic rationale for combining inhibitors of the SOS1:KRAS complex with inhibitors like MRTX849 that target GDP-loaded KRASG12C. In this report, we detail the design and discovery of MRTX0902─a potent, selective, brain-penetrant, and orally bioavailable SOS1 binder that disrupts the SOS1:KRASG12C PPI. Oral administration of MRTX0902 in combination with MRTX849 results in a significant increase in antitumor activity relative to that of either single agent, including tumor regressions in a subset of animals in the MIA PaCa-2 tumor mouse xenograft model.


Subject(s)
Brain , Proto-Oncogene Proteins p21(ras) , Acetonitriles , Animals , Cell Line, Tumor , Humans , Mice , Mutation , Piperazines , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines , SOS1 Protein/metabolism
14.
J Med Chem ; 65(3): 1749-1766, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35041419

ABSTRACT

The PRMT5•MTA complex has recently emerged as a new synthetically lethal drug target for the treatment of MTAP-deleted cancers. Here, we report the discovery of development candidate MRTX1719. MRTX1719 is a potent and selective binder to the PRMT5•MTA complex and selectively inhibits PRMT5 activity in MTAP-deleted cells compared to MTAP-wild-type cells. Daily oral administration of MRTX1719 to tumor xenograft-bearing mice demonstrated dose-dependent inhibition of PRMT5-dependent symmetric dimethylarginine protein modification in MTAP-deleted tumors that correlated with antitumor activity. A 4-(aminomethyl)phthalazin-1(2H)-one hit was identified through a fragment-based screen, followed by X-ray crystallography, to confirm binding to the PRMT5•MTA complex. Fragment growth supported by structural insights from X-ray crystallography coupled with optimization of pharmacokinetic properties aided the discovery of development candidate MRTX1719.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Phthalazines/therapeutic use , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Deoxyadenosines/metabolism , Female , Gene Deletion , Humans , Mice, Nude , Phthalazines/chemical synthesis , Phthalazines/metabolism , Protein Binding , Protein-Arginine N-Methyltransferases/metabolism , Purine-Nucleoside Phosphorylase/deficiency , Purine-Nucleoside Phosphorylase/genetics , Thionucleosides/metabolism , Xenograft Model Antitumor Assays
15.
J Med Chem ; 65(4): 3123-3133, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34889605

ABSTRACT

KRASG12D, the most common oncogenic KRAS mutation, is a promising target for the treatment of solid tumors. However, when compared to KRASG12C, selective inhibition of KRASG12D presents a significant challenge due to the requirement of inhibitors to bind KRASG12D with high enough affinity to obviate the need for covalent interactions with the mutant KRAS protein. Here, we report the discovery and characterization of the first noncovalent, potent, and selective KRASG12D inhibitor, MRTX1133, which was discovered through an extensive structure-based activity improvement and shown to be efficacious in a KRASG12D mutant xenograft mouse tumor model.


Subject(s)
Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Drug Discovery , Humans , Mice , Models, Molecular , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
16.
J Med Chem ; 63(13): 6679-6693, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32250617

ABSTRACT

Capping off an era marred by drug development failures and punctuated by waning interest and presumed intractability toward direct targeting of KRAS, new technologies and strategies are aiding in the target's resurgence. As previously reported, the tetrahydropyridopyrimidines were identified as irreversible covalent inhibitors of KRASG12C that bind in the switch-II pocket of KRAS and make a covalent bond to cysteine 12. Using structure-based drug design in conjunction with a focused in vitro absorption, distribution, metabolism and excretion screening approach, analogues were synthesized to increase the potency and reduce metabolic liabilities of this series. The discovery of the clinical development candidate MRTX849 as a potent, selective covalent inhibitor of KRASG12C is described.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Mice , Models, Molecular , Mutation , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Xenograft Model Antitumor Assays
17.
Cancer Discov ; 10(1): 54-71, 2020 01.
Article in English | MEDLINE | ID: mdl-31658955

ABSTRACT

Despite decades of research, efforts to directly target KRAS have been challenging. MRTX849 was identified as a potent, selective, and covalent KRASG12C inhibitor that exhibits favorable drug-like properties, selectively modifies mutant cysteine 12 in GDP-bound KRASG12C, and inhibits KRAS-dependent signaling. MRTX849 demonstrated pronounced tumor regression in 17 of 26 (65%) KRASG12C-positive cell line- and patient-derived xenograft models from multiple tumor types, and objective responses have been observed in patients with KRASG12C-positive lung and colon adenocarcinomas. Comprehensive pharmacodynamic and pharmacogenomic profiling in sensitive and partially resistant nonclinical models identified mechanisms implicated in limiting antitumor activity including KRAS nucleotide cycling and pathways that induce feedback reactivation and/or bypass KRAS dependence. These factors included activation of receptor tyrosine kinases (RTK), bypass of KRAS dependence, and genetic dysregulation of cell cycle. Combinations of MRTX849 with agents that target RTKs, mTOR, or cell cycle demonstrated enhanced response and marked tumor regression in several tumor models, including MRTX849-refractory models. SIGNIFICANCE: The discovery of MRTX849 provides a long-awaited opportunity to selectively target KRASG12C in patients. The in-depth characterization of MRTX849 activity, elucidation of response and resistance mechanisms, and identification of effective combinations provide new insight toward KRAS dependence and the rational development of this class of agents.See related commentary by Klempner and Hata, p. 20.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Acetonitriles/therapeutic use , Adenocarcinoma of Lung/drug therapy , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Lung Neoplasms/drug therapy , Mutation , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Pyrrolidines/therapeutic use , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Apoptosis , Cell Proliferation , Clinical Trials, Phase I as Topic , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Middle Aged , Prognosis , Pyrimidines , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
18.
ACS Med Chem Lett ; 9(12): 1230-1234, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613331

ABSTRACT

KRAS is the most frequently mutated driver oncogene in human cancer, and KRAS mutations are commonly associated with poor prognosis and resistance to standard treatment. The ability to effectively target and block the function of mutated KRAS has remained elusive despite decades of research. Recent findings have demonstrated that directly targeting KRAS-G12C with electrophilic small molecules that covalently modify the mutated codon 12 cysteine is feasible. We have discovered a series of tetrahydropyridopyrimidines as irreversible covalent inhibitors of KRAS-G12C with in vivo activity. The PK/PD and efficacy of compound 13 will be highlighted.

20.
PLoS One ; 10(9): e0138616, 2015.
Article in English | MEDLINE | ID: mdl-26398286

ABSTRACT

Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; Ki<0.5 nM; cellular IC50 2-6 nM). Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis). Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10). Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment. Collectively, this study raises a concern that single agent therapies inhibiting Mps1 will not be well-tolerated clinically but may be when combined with a selective CDK4/6 drug.


Subject(s)
Cell Cycle Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Animals , Apoptosis/drug effects , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Histones/metabolism , Humans , Intestine, Small/pathology , Mice , Mice, SCID , Mitosis/drug effects , Phosphorylation , Piperazines/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/toxicity , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Pyridines/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Rats , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...