Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 10: 214, 2017.
Article in English | MEDLINE | ID: mdl-28725178

ABSTRACT

Spatial working memory (SWM) and the classical, tetanus-induced long-term potentiation (LTP) at hippocampal CA3/CA1 synapses are dependent on L-α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) containing GluA1 subunits as demonstrated by knockout mice lacking GluA1. In GluA1 knockout mice LTP and SWM deficits could be partially recovered by transgenic re-installation of full-length GluA1 in principle forebrain neurons. Here we partially restored hippocampal LTP in GluA1-deficient mice by forebrain-specific depletion of the GluA2 gene, by the activation of a hypomorphic GluA2(Q) allele and by transgenic expression of PDZ-site truncated GFP-GluA1(TG). In none of these three mouse lines, the partial LTP recovery improved the SWM performance of GluA1-deficient mice suggesting a specific function of intact GluA1/2 receptors and the GluA1 intracellular carboxyl-terminus in SWM and its associated behavior.

2.
Hippocampus ; 23(12): 1359-66, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23929622

ABSTRACT

Spatial working memory (SWM), the ability to process and manipulate spatial information over a relatively short period of time, requires an intact hippocampus, but also involves other forebrain nuclei in both in rodents and humans. Previous studies in mice showed that the molecular mechanism of SWM includes activation of AMPA receptors containing the GluA1 subunit (encoded by gria1) as GluA1 deletion in the whole brain (gria1(-/-)) results in strong SWM deficit. However, since these mice globally lack GluA1, the circuit mechanisms of GluA1 contribution to SWM remain unknown. In this study, by targeted expression of GluA1 containing AMPA receptors in the forebrain of gria1(-/-) mice or by removing GluA1 selectively from hippocampus of mice with "floxed" GluA1 alleles (gria1(fl/fl) ), we show that SWM requires GluA1 action in cortical circuits but is only partially dependent on GluA1-containing AMPA receptors in hippocampus. We further show that hippocampal GluA1 contribution to SWM is temporally restricted and becomes prominent at longer retention intervals (≥ 30 s). These findings provide a novel insight into the neural circuits required for SWM processing and argue that AMPA mediated signaling across forebrain and hippocampus differentially contribute to encoding of SWM.


Subject(s)
Hippocampus/metabolism , Memory, Short-Term/physiology , Prosencephalon/metabolism , Receptors, AMPA/metabolism , Space Perception/physiology , Animals , Conditioning, Classical/physiology , Fear/physiology , Female , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/metabolism , Phosphopyruvate Hydratase/metabolism , Receptors, AMPA/genetics , Stereotaxic Techniques
3.
Neurobiol Dis ; 52: 160-7, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23262314

ABSTRACT

Glutamate receptor dependent synaptic plasticity plays an important role in the pathophysiology of depression. Hippocampal samples from clinically depressed patients display reduced mRNA levels for GluA1, a major subunit of AMPA receptors. Moreover, activation and synaptic incorporation of GluA1-containing AMPA receptors are required for the antidepressant-like effects of NMDA receptor antagonists. These findings argue that GluA1-dependent synaptic plasticity might be critically involved in the expression of depression. Using an animal model of depression, we demonstrate that global or hippocampus-selective deletion of GluA1 impairs expression of experience-dependent behavioral despair. This impairment is mediated by the interaction of GluA1 with PDZ-binding domain proteins, as deletion of the C-terminal leucine alone is sufficient to replicate the behavioral phenotype. Our results provide evidence for a significant role of hippocampal GluA1-containing AMPA receptors and their PDZ-interaction in experience-dependent expression of behavioral despair and link mechanisms of hippocampal synaptic plasticity with behavioral expression of depression.


Subject(s)
Behavior, Animal/physiology , Hippocampus/metabolism , Learning/physiology , Neuronal Plasticity/physiology , Neurons/physiology , PDZ Domains/physiology , Receptors, AMPA/genetics , Animals , Helplessness, Learned , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Receptors, AMPA/metabolism , Swimming
4.
Front Neurosci ; 1(1): 97-110, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18982121

ABSTRACT

Long Homer proteins forge assemblies of signaling components involved in glutamate receptor signaling in postsynaptic excitatory neurons, including those underlying synaptic transmission and plasticity. The short immediate-early gene (IEG) Homer1a can dynamically uncouple these physical associations by functional competition with long Homer isoforms. To examine the consequences of Homer1a-mediated "uncoupling" for synaptic plasticity and behavior, we generated forebrain-specific tetracycline (tet) controlled expression of Venus-tagged Homer1a (H1aV) in mice. We report that sustained overexpression of H1aV impaired spatial working but not reference memory. Most notably, a similar impairment was observed when H1aV expression was restricted to the dorsal hippocampus (HP), which identifies this structure as the principal cortical area for spatial working memory. Interestingly, H1aV overexpression also abolished maintenance of CA3-CA1 long-term potentiation (LTP). These impairments, generated by sustained high Homer1a levels, identify a requirement for long Homer forms in synaptic plasticity and temporal encoding of spatial memory.

5.
J Neurosci ; 26(33): 8428-40, 2006 Aug 16.
Article in English | MEDLINE | ID: mdl-16914668

ABSTRACT

We demonstrate the fundamental importance of glutamate receptor B (GluR-B) containing AMPA receptors in hippocampal function by analyzing mice with conditional GluR-B deficiency in postnatal forebrain principal neurons (GluR-B(deltaFb)). These mice are as adults sufficiently robust to permit comparative cellular, physiological, and behavioral studies. GluR-B loss induced moderate long-term changes in the hippocampus of GluR-B(deltaFb) mice. Parvalbumin-expressing interneurons in the dentate gyrus and the pyramidal cells in CA3 were decreased in number, and neurogenesis in the subgranular zone was diminished. Excitatory synaptic CA3-to-CA1 transmission was reduced, although synaptic excitability, as quantified by the lowered threshold for population spike initiation, was increased compared with control mice. These changes did not alter CA3-to-CA1 long-term potentiation (LTP), which in magnitude was similar to LTP in control mice. The altered hippocampal circuitry, however, affected spatial learning in GluR-B(deltaFb) mice. The primary source for the observed changes is most likely the AMPA receptor-mediated Ca2+ signaling that appears after GluR-B depletion, because we observed similar alterations in GluR-B(QFb) mice in which the expression of Ca2+-permeable AMPA receptors in principal neurons was induced by postnatal activation of a Q/R-site editing-deficient GluR-B allele.


Subject(s)
Hippocampus/physiology , Long-Term Potentiation/physiology , Memory/physiology , Prosencephalon/metabolism , Receptors, AMPA/physiology , Space Perception/physiology , Animals , Calcium/metabolism , Cell Division , Dentate Gyrus/cytology , Dentate Gyrus/metabolism , Exploratory Behavior , Gene Silencing , Hippocampus/cytology , Maze Learning/physiology , Mice , Mice, Knockout , Neuronal Plasticity , Neurons/cytology , Neurons/metabolism , Receptors, AMPA/deficiency , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...