Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Xray Sci Technol ; 30(3): 459-475, 2022.
Article in English | MEDLINE | ID: mdl-35213340

ABSTRACT

BACKGROUND: Endovascular mechanical thrombectomy (EMT) is an effective method to treat acute ischemic stroke (AIS) patients due to large vessel occlusion (LVO). However, stratifying AIS patients who can and cannot benefit from EMT remains a clinical challenge. OBJECTIVE: To develop a new quantitative image marker computed from pre-intervention computed tomography perfusion (CTP) images and evaluate its feasibility to predict clinical outcome among AIS patients undergoing EMT after diagnosis of LVO. METHODS: A retrospective dataset of 31 AIS patients with pre-intervention CTP images is assembled. A computer-aided detection (CAD) scheme is developed to pre-process CTP images of different scanning series for each study case, perform image segmentation, quantify contrast-enhanced blood volumes in bilateral cerebral hemispheres, and compute features related to asymmetrical cerebral blood flow patterns based on the cumulative cerebral blood flow curves of two hemispheres. Next, image markers based on a single optimal feature and machine learning (ML) models fused with multi-features are developed and tested to classify AIS cases into two classes of good and poor prognosis based on the Modified Rankin Scale. Performance of image markers is evaluated using the area under the ROC curve (AUC) and accuracy computed from the confusion matrix. RESULTS: The ML model using the neuroimaging features computed from the slopes of the subtracted cumulative blood flow curves between two cerebral hemispheres yields classification performance of AUC = 0.878±0.077 with an overall accuracy of 90.3%. CONCLUSIONS: This study demonstrates feasibility of developing a new quantitative imaging method and marker to predict AIS patients' prognosis in the hyperacute stage, which can help clinicians optimally treat and manage AIS patients.


Subject(s)
Ischemic Stroke , Humans , Computed Tomography Angiography/methods , Ischemic Stroke/diagnostic imaging , Prognosis , Retrospective Studies , Tomography, X-Ray Computed/methods
2.
Ann Biomed Eng ; 50(4): 413-425, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35112157

ABSTRACT

Accurately predicting clinical outcome of aneurysmal subarachnoid hemorrhage (aSAH) patients is difficult. The purpose of this study was to develop and test a new fully-automated computer-aided detection (CAD) scheme of brain computed tomography (CT) images to predict prognosis of aSAH patients. A retrospective dataset of 59 aSAH patients was assembled. Each patient had 2 sets of CT images acquired at admission and prior-to-discharge. CAD scheme was applied to segment intracranial brain regions into four subregions, namely, cerebrospinal fluid (CSF), white matter (WM), gray matter (GM), and leaked extraparenchymal blood (EPB), respectively. CAD then detects sulci and computes 9 image features related to 5 volumes of the segmented sulci, EPB, CSF, WM, and GM and 4 volumetrical ratios to sulci. Subsequently, applying a leave-one-case-out cross-validation method embedded with a principal component analysis (PCA) algorithm to generate optimal feature vector, 16 support vector machine (SVM) models were built using CT images acquired either at admission or prior-to-discharge to predict each of eight clinically relevant parameters commonly used to assess patients' prognosis. Finally, a receiver operating characteristics (ROC) method was used to evaluate SVM model performance. Areas under ROC curves of 16 SVM models range from 0.62 ± 0.07 to 0.86 ± 0.07. In general, SVM models trained using CT images acquired at admission yielded higher accuracy to predict short-term clinical outcomes, while SVM models trained using CT images acquired prior-to-discharge demonstrated higher accuracy in predicting long-term clinical outcomes. This study demonstrates feasibility to predict prognosis of aSAH patients using new quantitative image markers generated by SVM models.


Subject(s)
Subarachnoid Hemorrhage , Humans , Pilot Projects , ROC Curve , Retrospective Studies , Subarachnoid Hemorrhage/diagnostic imaging , Support Vector Machine
3.
IEEE Trans Biomed Eng ; 68(9): 2764-2775, 2021 09.
Article in English | MEDLINE | ID: mdl-33493108

ABSTRACT

OBJECTIVE: Since computer-aided diagnosis (CAD) schemes of medical images usually computes large number of image features, which creates a challenge of how to identify a small and optimal feature vector to build robust machine learning models, the objective of this study is to investigate feasibility of applying a random projection algorithm (RPA) to build an optimal feature vector from the initially CAD-generated large feature pool and improve performance of machine learning model. METHODS: We assemble a retrospective dataset involving 1,487 cases of mammograms in which 644 cases have confirmed malignant mass lesions and 843 have benign lesions. A CAD scheme is first applied to segment mass regions and initially compute 181 features. Then, support vector machine (SVM) models embedded with several feature dimensionality reduction methods are built to predict likelihood of lesions being malignant. All SVM models are trained and tested using a leave-one-case-out cross-validation method. SVM generates a likelihood score of each segmented mass region depicting on one-view mammogram. By fusion of two scores of the same mass depicting on two-view mammograms, a case-based likelihood score is also evaluated. RESULTS: Comparing with the principle component analyses, nonnegative matrix factorization, and Chi-squared methods, SVM embedded with RPA yielded a significantly higher case-based lesion classification performance with the area under ROC curve of 0.84 ± 0.01 (p<0.02). CONCLUSION: The study demonstrates that RPA is a promising method to generate optimal feature vectors and improve SVM performance. SIGNIFICANCE: This study presents a new method to develop CAD schemes with significantly higher and robust performance.


Subject(s)
Breast Neoplasms , Radiographic Image Interpretation, Computer-Assisted , Algorithms , Breast Neoplasms/diagnostic imaging , Female , Humans , Machine Learning , Mammography , Retrospective Studies , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...