Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 659: 124292, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38823466

ABSTRACT

Camptothecin, a natural alkaloid, was first isolated from the bark and stem of the Camptotheca acuminate tree in China. It, along with its analogs, has demonstrated potent anti-cancer activity in preclinical studies, particularly against solid tumors such as lung, breast, ovarian, and colon cancer. Despite its promising anti-cancer activity, the application of camptothecin is limited due to its poor solubility, toxicity, and limited biodistribution. Nanotechnology-based drug delivery systems have been used to overcome limited bioavailability and ensure greater biodistribution after administration. Additionally, various drug delivery systems, particularly polymeric micelles, have been investigated to enhance the solubility, stability, and efficacy of camptothecin. Polymeric micelles offer a promising approach for the delivery of camptothecin. Polymeric micelles possess a core-shell structure, with a typical hydrophobic core, which exhibits a high capacity to incorporate hydrophobic drugs. The structure of polymeric micelles can be engineered to have a high drug loading capacity, thereby enabling them to carry a large amount of hydrophobic drug within their core. The shell portion of polymeric micelles is composed of hydrophilic polymers Furthermore, the hydrophilic segment of polymeric micelles plays an important role in protecting against the reticuloendothelial system (RES). This review provides a discussion on recent research and developments in the delivery of camptothecin using polymeric micelles for the treatment of cancers.


Subject(s)
Antineoplastic Agents, Phytogenic , Camptothecin , Drug Delivery Systems , Micelles , Polymers , Camptothecin/administration & dosage , Camptothecin/chemistry , Camptothecin/analogs & derivatives , Camptothecin/pharmacokinetics , Camptothecin/pharmacology , Humans , Polymers/chemistry , Animals , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Drug Delivery Systems/methods , Neoplasms/drug therapy , Drug Carriers/chemistry , Solubility , Tissue Distribution , Hydrophobic and Hydrophilic Interactions
2.
Drug Discov Today ; 28(9): 103673, 2023 09.
Article in English | MEDLINE | ID: mdl-37331691

ABSTRACT

Chronic wounds are ubiquitously inhabited by bacteria, and they remain a challenge as they cause significant discomfort and because their treatment consumes huge clinical resources. To reduce the burden that chronic wounds place upon both patients and health services, a wide variety of approaches have been devised and investigated. Bioinspired nanomaterials have shown great success in wound healing when compared to existing approaches, showing better ability to mimic natural extracellular matrix (ECM) components and thus to promote cell adhesion, proliferation, and differentiation. Wound dressings that are based on bioinspired nanomaterials can be engineered to promote anti-inflammatory mechanisms and to inhibit the formation of microbial biofilms. We consider the extensive potential of bioinspired nanomaterials in wound healing, revealing a scope beyond that covered previously.


Subject(s)
Anti-Infective Agents , Nanostructures , Humans , Wound Healing , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...