Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
2.
Nat Biotechnol ; 38(11): 1288-1297, 2020 11.
Article in English | MEDLINE | ID: mdl-32541956

ABSTRACT

The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state. Daily oral administration of the peptides in WD-fed LDLr-/- mice reduced plasma total cholesterol levels and atherosclerotic plaques. Depletion of the microbiome with antibiotics abrogated these effects. Peptide treatment reprogrammed the microbiome transcriptome, suppressed the production of pro-inflammatory cytokines (including interleukin-6, tumor necrosis factor-α and interleukin-1ß), rebalanced levels of short-chain fatty acids and bile acids, improved gut barrier integrity and increased intestinal T regulatory cells. Directed chemical manipulation provides an additional tool for deciphering the chemical biology of the gut microbiome and might advance microbiome-targeted therapeutics.


Subject(s)
Atherosclerosis/microbiology , Gastrointestinal Microbiome , Animals , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Atherosclerosis/blood , Bacteria/drug effects , Bacteria/growth & development , Biomarkers/metabolism , Cholesterol/blood , Diet, Western , Feeding Behavior , Female , Gastrointestinal Microbiome/genetics , Gene Expression Regulation/drug effects , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Immunologic Factors/pharmacology , Mice, Inbred C57BL , Models, Biological , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Receptors, LDL/metabolism , Tight Junction Proteins/metabolism , Transcription, Genetic
3.
ACS Med Chem Lett ; 10(7): 1014, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31312399
4.
ACS Med Chem Lett ; 9(7): 575, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034578
5.
7.
ACS Cent Sci ; 3(6): 639-646, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28691076

ABSTRACT

There is great interest in developing new modes of therapy for atherosclerosis to treat coronary heart disease and stroke, particularly ones that involve modulation of high-density lipoproteins (HDLs). Here, we describe a new supramolecular chemotype for altering HDL morphology and function. Guided by rational design and SAR-driven peptide sequence enumerations, we have synthesized and determined the HDL remodeling activities of over 80 cyclic d,l-α-peptides. We have identified a few distinct sequence motifs that are effective in vitro in remodeling human and mouse plasma HDLs to increase the concentration of lipid-poor pre-beta HDLs, which are key initial acceptors of cholesterol in the reverse cholesterol transport (RCT) process, and concomitantly promote cholesterol efflux from macrophage cells. Functional assays with various control peptides, such as scrambled sequences, linear and enantiomeric cyclic peptide variants, and backbone-modified structures that limit peptide self-assembly, provide strong support for the supramolecular mode of action. Importantly, when the lead cyclic peptide c[wLwReQeR] was administered to mice (ip), it also promoted the formation of small, lipid-poor HDLs in vivo, displayed good plasma half-life (∼6 h), did not appear to have adverse side effects, and exerted potent anti-inflammatory effects in an acute in vivo inflammation assay. Given that previously reported HDL remodeling peptides have been based on α-helical apoA-I mimetic architectures, the present study, involving a new structural class, represents a promising step toward new potential therapeutics to combat atherosclerosis.

8.
ACS Med Chem Lett ; 7(7): 662-5, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27437073

ABSTRACT

The role of phenotypic assessment in drug discovery is discussed, along with the discovery and development of TOPAMAX (topiramate), a billion-dollar molecule for the treatment of epilepsy and migraine.

9.
ACS Med Chem Lett ; 6(3): 227, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25941543
10.
J Lipid Res ; 55(10): 2053-63, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24975585

ABSTRACT

We have observed that molecular constructs based on multiple apoA-I mimetic peptides attached to a branched scaffold display promising anti-atherosclerosis functions in vitro. Building on these promising results, we now describe chronic in vivo studies to assess anti-atherosclerotic efficacy of HDL-like nanoparticles assembled from a trimeric construct, administered over 10 weeks either ip or orally to LDL receptor-null mice. When dosed ip, the trimer-based nanolipids markedly reduced plasma LDL-cholesterol levels by 40%, unlike many other apoA-I mimetic peptides, and were substantially atheroprotective. Surprisingly, these nanoparticles were also effective when administered orally at a dose of 75 mg/kg, despite the peptide construct being composed of l-amino acids and being undetectable in the plasma. The orally administered nanoparticles reduced whole aorta lesion areas by 55% and aortic sinus lesion volumes by 71%. Reductions in plasma cholesterol were due to the loss of non-HDL lipoproteins, while plasma HDL-cholesterol levels were increased. At a 10-fold lower oral dose, the nanoparticles were marginally effective in reducing atherosclerotic lesions. Intriguingly, analogous results were obtained with nanolipids of the corresponding monomeric peptide. These nanolipid formulations provide an avenue for developing orally efficacious therapeutic agents to manage atherosclerosis.


Subject(s)
Apolipoprotein A-I , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/pharmacology , Nanoparticles/chemistry , Receptors, LDL/metabolism , Animals , Female , Lipoproteins, HDL/metabolism , Mice , Mice, Knockout , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Receptors, LDL/genetics
11.
J Med Chem ; 57(6): 2169-96, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24168751

ABSTRACT

Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL.


Subject(s)
Apolipoprotein A-I/chemistry , Atherosclerosis/drug therapy , Amino Acid Sequence , Animals , Anticholesteremic Agents/chemical synthesis , Anticholesteremic Agents/chemistry , Anticholesteremic Agents/pharmacology , Atherosclerosis/prevention & control , Biomimetics , Cardiotonic Agents/chemical synthesis , Cardiotonic Agents/pharmacology , Cholesterol, HDL/drug effects , Humans , Models, Molecular , Molecular Mimicry , Molecular Sequence Data , Peptide Fragments/chemistry , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary
12.
J Med Chem ; 56(22): 9019-30, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24205976

ABSTRACT

Broad-spectrum anticonvulsants are of considerable interest as antiepileptic drugs, especially because of their potential for treating refractory patients. Such "neurostabilizers" have also been used to treat other neurological disorders, including migraine, bipolar disorder, and neuropathic pain. We synthesized a series of sulfamide derivatives (4-9, 10a-i, 11a, 11b, 12) and evaluated their anticonvulsant activity. Thus, we identified promising sulfamide 4 (JNJ-26489112) and explored its pharmacological properties. Compound 4 exhibited excellent anticonvulsant activity in rodents against audiogenic, electrically induced, and chemically induced seizures. Mechanistically, 4 inhibited voltage-gated Na(+) channels and N-type Ca(2+) channels and was effective as a K(+) channel opener. The anticonvulsant profile of 4 suggests that it may be useful for treating multiple forms of epilepsy (generalized tonic-clonic, complex partial, absence seizures), including refractory (or pharmacoresistant) epilepsy, at dose levels that confer a good safety margin. On the basis of its pharmacology and other favorable characteristics, 4 was advanced into human clinical studies.


Subject(s)
Amides/chemistry , Amides/pharmacology , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Dioxanes/chemistry , Dioxanes/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Absorption , Amides/pharmacokinetics , Amides/therapeutic use , Animals , Anticonvulsants/pharmacokinetics , Anticonvulsants/therapeutic use , Dioxanes/pharmacokinetics , Dioxanes/therapeutic use , Dogs , Drug Evaluation, Preclinical , Drug Resistance , Epilepsy/drug therapy , Female , Humans , Male , Mice , Rats , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use
13.
J Am Chem Soc ; 135(36): 13414-24, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23978057

ABSTRACT

We describe an approach for engineering peptide-lipid nanoparticles that function similarly to high-density lipoprotein (HDL). Branched, multivalent constructs, bearing multiple 23- or 16-amino-acid peptides, were designed, synthesized, and combined with phospholipids to produce nanometer-scale discoidal HDL-like particles. A variety of biophysical techniques were employed to characterize the constructs, including size exclusion chromatography, analytical ultracentrifuge sedimentation, circular dichroism, transmission electron microscopy, and fluorescence spectroscopy. The nanoparticles functioned in vitro (human and mouse plasma) and in vivo (mice) to rapidly remodel large native HDLs into small lipid-poor HDL particles, which are key acceptors of cholesterol in reverse cholesterol transport. Fluorescent labeling studies showed that the constituents of the nanoparticles readily distributed into native HDLs, such that the peptide constructs coexisted with apolipoprotein A-I (apoA-I), the main structural protein in HDLs. Importantly, nanolipid particles containing multivalent peptides promoted efficient cellular cholesterol efflux and were functionally superior to those derived from monomeric apoA-I mimetic peptides. The multivalent peptide-lipid nanoparticles were also remarkably stable toward enzymatic digestion in vitro and displayed long half-lives and desirable pharmacokinetic profiles in mice, providing a real practical advantage over previously studied linear or tandem helical peptides. Encouragingly, a two-week exploratory efficacy study in a widely used animal model for atherosclerosis research (LDLr-null mice) using nanoparticles constructed from a trimeric peptide demonstrated an exceptional 50% reduction in the plasma total cholesterol levels compared to the control group. Altogether, the studies reported here point to an attractive avenue for designing synthetic, HDL-like nanoparticles, with potential for treating atherosclerosis.


Subject(s)
Lipoproteins, HDL/chemistry , Nanoparticles/chemistry , Peptides/chemistry , Animals , Atherosclerosis/drug therapy , Disease Models, Animal , Humans , Lipoproteins, HDL/blood , Lipoproteins, HDL/therapeutic use , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Models, Molecular , Molecular Structure , Nanoparticles/therapeutic use , Peptides/blood , Peptides/therapeutic use , Receptors, LDL/deficiency
14.
Bioorg Med Chem Lett ; 22(16): 5326-9, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22795331

ABSTRACT

Inhibitors of ketohexokinase (KHK) have potential for the treatment of diabetes and obesity. We have continued studies on a pyrimidinopyrimidine series of potent KHK inhibitors by exploring the 2-position substituent (R(3)) that interacts with Asp-27B in the ATP-binding region of KHK (viz. 1, 2; Table 1). We found that increased spacing between the terminal ammonium group and the heterocyclic scaffold (viz. 16-20), such that interaction with Asp-27B is not possible, still results in potent KHK inhibition (IC(50)=15-50 nM). We propose a new interaction with Asp-194, which serves to expand the pyrimidinopyrimidine pharmacophore.


Subject(s)
Enzyme Inhibitors/chemistry , Fructokinases/antagonists & inhibitors , Ligands , Pyrimidines/chemistry , Binding Sites , Computer Simulation , Crystallography, X-Ray , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Fructokinases/metabolism , Hep G2 Cells , Humans , Protein Binding , Protein Structure, Tertiary , Pyrimidines/chemical synthesis , Pyrimidines/metabolism
15.
ACS Med Chem Lett ; 2(9): 703-707, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21984958

ABSTRACT

Cystic fibrosis (CF) is a loss-of-function disease caused by mutations in the CF transmembrane conductance regulator (CFTR) protein, a chloride ion channel that localizes to the apical plasma membrane of epithelial cells. The most common form of the disease results from the deletion of phenylalanine-508 (ΔF508), leading to the accumulation of CFTR in the endoplasmic reticulum with a concomitant loss of chloride flux. We discovered that cyclic tetrapeptides, such as 11, 14, and 15, are able to correct the trafficking defect and restore cell surface activity of ΔF508-CFTR. Although this class of cyclic tetrapeptides is known to contain inhibitors of certain histone deacetylase (HDAC) isoforms, their HDAC inhibitory potencies did not directly correlate with their ability to rescue ΔF508-CFTR. In full HDAC profiling, 15 strongly inhibited HDACs 1, 2, 3, 10 and 11, but not HDACs 4-9. Although 15 had less potent IC(50) values than reference agent vorinostat (2) in HDAC profiling, it was markedly more potent than 2 in rescuing ΔF508-CFTR. We suggest that specific HDACs can have a differential influence on correcting ΔF508-CFTR, which may reflect both deacetylase and protein scaffolding actions.

16.
ACS Med Chem Lett ; 2(7): 538-43, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-24900346

ABSTRACT

Attenuation of fructose metabolism by the inhibition of ketohexokinase (KHK; fructokinase) should reduce body weight, free fatty acids, and triglycerides, thereby offering a novel approach to treat diabetes and obesity in response to modern diets. We have identified potent, selective inhibitors of human hepatic KHK within a series of pyrimidinopyrimidines (1). For example, 8, 38, and 47 exhibited KHK IC50 values of 12, 7, and 8 nM, respectively, and also showed potent cellular KHK inhibition (IC50 < 500 nM), which relates to their intrinsic potency vs KHK and their ability to penetrate cells. X-ray cocrystal structures of KHK complexes of 3, 8, and 47 revealed the important interactions within the enzyme's adenosine 5'-triphosphate (ATP)-binding pocket.

17.
Biochem Pharmacol ; 80(7): 1033-41, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20599788

ABSTRACT

Chymases (EC 3.4.21.39) are mast cell serine proteinases that are variably expressed in different species and, in most cases, display either chymotryptic or elastolytic substrate specificity. Given that chymase inhibitors have emerged as potential therapeutic agents for treating various inflammatory, allergic, and cardiovascular disorders, it is important to understand interspecies differences of the enzymes as well as the behavior of inhibitors with them. We have expressed chymases from humans, macaques, dogs, sheep (MCP2 and MCP3), guinea pigs, and hamsters (HAM1 and HAM2) in baculovirus-infected insect cells. The enzymes were purified and characterized with kinetic constants by using chromogenic substrates. We evaluated in vitro the potency of five nonpeptide inhibitors, originally targeted against human chymase. The inhibitors exhibited remarkable cross-species variation of sensitivity, with the greatest potency observed against human and macaque chymases, with K(i) values ranging from approximately 0.4 to 72nM. Compounds were 10-300-fold less potent, and in some instances ineffective, against chymases from the other species. The X-ray structure of one of the potent phosphinate inhibitors, JNJ-18054478, complexed with human chymase was solved at 1.8A resolution to further understand the binding mode. Subtle variations in the residues in the active site that are already known to influence chymase substrate specificity can also strongly affect the compound potency. The results are discussed in the context of selecting a suitable animal model to study compounds ultimately targeted for human chymase.


Subject(s)
Chymases/metabolism , Animals , Baculoviridae/metabolism , Cricetinae , Dogs , Guinea Pigs , Humans , Macaca , Mast Cells/enzymology , Mast Cells/metabolism , Serine Proteases , Sheep , Substrate Specificity , X-Rays
18.
J Med Chem ; 53(4): 1843-56, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20102150

ABSTRACT

We have identified RWJ-671818 (8) as a novel, low molecular weight, orally active inhibitor of human alpha-thrombin (K(i) = 1.3 nM) that is potentially useful for the acute and chronic treatment of venous and arterial thrombosis. In a rat deep venous thrombosis model used to assess antithrombotic efficacy, oral administration of 8 at 30 and 50 mg/kg reduced thrombus weight by 87 and 94%, respectively. In an anesthetized rat antithrombotic model, where electrical stimulation of the carotid artery created a thrombus, 8 prolonged occlusion time 2- and 3-fold at 0.1 and 1.0 mg/kg, i.v., respectively, and more than doubled activated clotting time and activated partial thromboplastin time at the higher dose. This compound had excellent oral bioavailability of 100% in dogs with an estimated half-life of approximately 3 h. On the basis of its noteworthy preclinical data, 8 was advanced into human clinical trials and successfully progressed through phase 1 studies.


Subject(s)
Anticoagulants/chemical synthesis , Fibrinolytic Agents/chemical synthesis , Guanidines/chemical synthesis , Pyrazines/chemical synthesis , Thrombin/antagonists & inhibitors , Amino Acid Motifs , Animals , Anticoagulants/pharmacokinetics , Anticoagulants/pharmacology , Blood Pressure/drug effects , Caco-2 Cells , Crystallography, X-Ray , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Dogs , Double-Blind Method , Electrocardiography , Female , Fibrinolytic Agents/pharmacokinetics , Fibrinolytic Agents/pharmacology , Guanidines/pharmacokinetics , Guanidines/pharmacology , Guinea Pigs , Heart Rate/drug effects , Hemodynamics/drug effects , Humans , In Vitro Techniques , Male , Microsomes, Liver/metabolism , Models, Molecular , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Rats , Rats, Sprague-Dawley , Recombinant Proteins/antagonists & inhibitors , Structure-Activity Relationship , Thrombin/chemistry , Venous Thrombosis/blood , Venous Thrombosis/drug therapy
20.
Am J Respir Crit Care Med ; 181(3): 247-53, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19875688

ABSTRACT

RATIONALE: Mast cells and neutrophils are key contributors to the pathophysiological inflammatory processes that underpin asthma and chronic obstructive pulmonary disease, partly through the release of noxious serine proteases, including cathepsin G (Cat G) and chymase. From this standpoint, a dual inhibitor of neutrophil Cat G and mast cell chymase could protect against these disease-related inflammatory responses. OBJECTIVES: We examined the antiinflammatory pharmacology of RWJ-355871, a dual inhibitor of Cat G and chymase, in animal models of inflammation that evince pathophysiological pathways relevant to asthma and chronic obstructive pulmonary disease to determine the therapeutic potential of this compound. METHODS: In an ovalbumin (OVA)-sensitized rat model, RWJ-355871 was administered to block the mast-cell-mediated increase in paw volume caused by OVA injection. In a sheep asthma model, antigen-induced airway responses were assessed with and without aerosol treatment with RWJ-355871. In a murine tobacco-smoke model of airway inflammation, the effect of RWJ-355871 on smoke-induced neutrophilia was determined. MEASUREMENTS AND MAIN RESULTS: Intravenous treatment of OVA-sensitized rats with RWJ-355871 provided dose-dependent reduction in the increase in rat paw volume. In allergic sheep, aerosol pretreatment with RWJ-355871 showed dose-dependent inhibition of the antigen-induced early response, late response, and post-antigen-induced airway hyperreponsiveness. In tobacco-smoke-exposed mice, nebulized RWJ-355871 significantly reduced the smoke-induced neutrophilia from the levels observed in untreated mice. CONCLUSIONS: The preclinical antiinflammatory effects of RWJ-355871 in these animal models of inflammation indicate that this dual inhibitor may have therapeutic utility for treating airway inflammatory diseases involving mechanisms that depend on Cat G and/or chymase.


Subject(s)
Cathepsin G/antagonists & inhibitors , Chymases/antagonists & inhibitors , Lung Diseases/enzymology , Organophosphonates/therapeutic use , Piperidines/therapeutic use , Pulmonary Disease, Chronic Obstructive/enzymology , Animals , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Cathepsin G/metabolism , Chymases/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Female , Injections, Intravenous , Lung Diseases/drug therapy , Mice , Organophosphonates/administration & dosage , Piperidines/administration & dosage , Pulmonary Disease, Chronic Obstructive/drug therapy , Rats , Sheep , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...