Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 37(2): 861-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20229895

ABSTRACT

The dose response of the BANG 3 polymer gel dosimeter (MGS Research Inc., Madison, CT) was studied using the OCTOPUS laser CT scanner (MGS Research Inc., Madison, CT). Six 17 cm diameter and 12 cm high Barex cylinders, and 18 small glass vials were used to house the gel. The gel phantoms were irradiated with 6 and 10 MV photons, as well as 12 and 16 MeV electrons using a Varian Clinac 2100EX. Three calibration methods were used to obtain the dose response curves: (a) Optical density measurements on the 18 glass vials irradiated with graded doses from 0 to 4 Gy using 6 or 10 MV large field irradiations; (b) optical-CT scanning of Barex cylinders irradiated with graded doses (0.5, 1, 1.5, and 2 Gy) from four adjacent 4 x 4 cm2 photon fields or 6 x 6 cm2 electron fields; and (c) percent depth dose (PDD) comparison of optical-CT scans with ion chamber measurements for 6 x 6 cm2, 12 and 16 MeV electron fields. The dose response of the BANG3 gel was found to be linear and energy independent within the uncertainties of the experimental methods (about 3%). The slopes of the linearly fitted dose response curves (dose sensitivities) from the four field irradiations (0.0752 +/- 3%, 0.0756 +/- 3%, 0.0767 +/- 3%, and 0.0759 +/- 3% cm(-1) Gy(-1)) and the PDD matching methods (0.0768 +/- 3% and 0.0761 +/- 3% cm(-1) Gy(-1)) agree within 2.2%, indicating a good reproducibility of the gel dose response within phantoms of the same geometry. The dose sensitivities from the glass vial approach are different from those of the cylindrical Barex phantoms by more than 30%, owing probably to the difference in temperature inside the two types of phantoms during gel formation and irradiation, and possible oxygen contamination of the glass vial walls. The dose response curve obtained from the PDD matching approach with 16 MeV electron field was used to calibrate the gel phantom irradiated with the 12 MeV, 6 x 6 cm2 electron field. Three-dimensional dose distributions from the gel measurement and the Eclipse planning system (Varian Corporation, Palo Alto, CA) were compared and evaluated using 3% dose difference and 2 mm distance-to-agreement criteria.


Subject(s)
Algorithms , Gels/radiation effects , Polymers/radiation effects , Radiometry/instrumentation , Radiometry/standards , Tomography, X-Ray Computed/methods , Calibration , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Gels/chemistry , New York , Polymers/chemistry , Reproducibility of Results , Sensitivity and Specificity
2.
Eur J Radiol ; 68(3 Suppl): S129-36, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18606516

ABSTRACT

The tissue-sparing effect of parallel, thin (narrower than 100 microm) synchrotron-generated X-ray planar beams (microbeams) in healthy tissues including the central nervous system (CNS) is known since early 1990 s. This, together with a remarkable preferential tumoricidal effect of such beam arrays observed at high doses, has been the basis for labeling the method microbeam radiation therapy (MRT). Recent studies showed that beams as thick as 0.68 mm ("thick microbeams") retain part of their sparing effect in the rat's CNS, and that two such orthogonal microbeams arrays can be interlaced to produce an unsegmented field at the target, thus producing focal targeting. We measured the half-value layer (HVL) of our 120-keV median-energy beam in water phantoms, and we irradiated stereotactically bis acrylamide nitrogen gelatin (BANG)-gel-filled phantoms, including one containing a human skull, with interlaced microbeams and imaged them with MRI. A 43-mm water HVL resulted, together with an adequately large peak-to-valley ratio of the microbeams' three-dimensional dose distribution in the vicinity of the 20 mm x 20 mm x 20 mm target deep into the skull. Furthermore, the 80-20% dose fall off was a fraction of a millimeter as predicted by Monte Carlo simulations. We conclude that clinical MRT will benefit from the use of higher beam energies than those used here, although the current energy could serve certain neurosurgical applications. Furthermore, thick microbeams particularly when interlaced present some advantages over thin microbeams in that they allow the use of higher beam energies and they could conceivably be implemented with high power orthovoltage X-ray tubes.


Subject(s)
Brain/physiology , Brain/radiation effects , Models, Biological , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, High-Energy/methods , Synchrotrons , Algorithms , Computer Simulation , Gels/radiation effects , Humans , Monte Carlo Method , Radiotherapy Dosage , Scattering, Radiation
3.
Med Phys ; 31(11): 3024-33, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15587656

ABSTRACT

Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG 3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner is further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG 3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cm x 6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the "3%-or-2 mm" criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.


Subject(s)
Gels/radiation effects , Imaging, Three-Dimensional/instrumentation , Polymers/radiation effects , Radiographic Image Interpretation, Computer-Assisted/instrumentation , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/instrumentation , Tomography, X-Ray Computed/instrumentation , Equipment Design , Equipment Failure Analysis , Imaging, Three-Dimensional/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity , Tomography, X-Ray Computed/methods
4.
Med Phys ; 31(5): 975-84, 2004 May.
Article in English | MEDLINE | ID: mdl-15191281

ABSTRACT

Heterogeneity corrections in dose calculations are necessary for radiation therapy treatment plans. Dosimetric measurements of the heterogeneity effects are hampered if the detectors are large and their radiological characteristics are not equivalent to water. Gel dosimetry can solve these problems. Furthermore, it provides three-dimensional (3D) dose distributions. We used a cylindrical phantom filled with BANG-3 polymer gel to measure 3D dose distributions in heterogeneous media. The phantom has a cavity, in which water-equivalent or bone-like solid blocks can be inserted. The irradiated phantom was scanned with an magnetic resonance imaging (MRI) scanner. Dose distributions were obtained by calibrating the polymer gel for a relationship between the absorbed dose and the spin-spin relaxation rate of the magnetic resistance (MR) signal. To study dose distributions we had to analyze MR imaging artifacts. This was done in three ways: comparison of a measured dose distribution in a simulated homogeneous phantom with a reference dose distribution, comparison of a sagittally scanned image with a sagittal image reconstructed from axially scanned data, and coregistration of MR and computed-tomography images. We found that the MRI artifacts cause a geometrical distortion of less than 2 mm and less than 10% change in the dose around solid inserts. With these limitations in mind we could make some qualitative measurements. Particularly we observed clear differences between the measured dose distributions around an air-gap and around bone-like material for a 6 MV photon beam. In conclusion, the gel dosimetry has the potential to qualitatively characterize the dose distributions near heterogeneities in 3D.


Subject(s)
Gels/analysis , Gels/radiation effects , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Polymers/analysis , Polymers/radiation effects , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Artifacts , Calibration , Feasibility Studies , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Radiation Dosage , Radiometry/instrumentation , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
5.
Med Phys ; 30(8): 2159-68, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12945982

ABSTRACT

We evaluated the OCTOPUS-ONE research laser CT scanner developed and manufactured by MGS Research, Inc. (Madison, CT). The scanner is designed for imaging 3D optical density distributions in BANG gels. The scanner operates in a translate-rotate configuration with a single scanning laser beam. The rotating cylindrical gel phantom is immersed in a refractive index matching solution and positioned at the center of a square tank made of plastic and glass. A stationary polarized He-Ne laser beam (633 nm) is reflected from a mirror moving parallel to the tank wall and scans the gel. Another mirror moves synchronously along the opposite side of the tank and collects the transmitted light and sends it to a single stationary silicon photodetector. A filtered backprojection algorithm is used to reconstruct projection data in a plane. The laser-mirrors-detector assembly is mounted on a horizontal platform that moves vertically for slice selection. We have tested the mechanical and optical setup, projection centering on the axis of rotation, linearity, and spatial resolution. We found the optical detector to respond linearly to transmitted light from control samples. The spatial resolution of the scanner was determined by employing a split field resolution technique. We obtained the horizontal and vertical full widths at half maxima of the laser beam intensity profiles as 0.6 and 0.8 mm, respectively. Dose calibration tests of the gel were performed using a nine-field (2 x 2 cm2 each) dose pattern irradiated at different dose levels. Finally, we compared gel-derived 2D planar dose distribution against radiochromic film measured dose distribution for both the nine-field and a uniform 5 x 5 cm2 field of 6 MV x rays. Very similar dose distributions were observed in gel and radiochromic film except in regions of steep dose gradient and highest dose. A dose normalization of 15.6% was required between the two dosimeters due to differences in overall radiation response. After normalization, analysis using the gamma evaluation showed that the radiochromic film and gel-measured dose distributions differed by a maximum gamma of 1.3 using 5% and 1.5 mm dose difference and distance-to-agreement criteria. The optical CT scanner has great potential as a 3D dosimeter, but a few refinements and further testing are necessary before its routine clinical use.


Subject(s)
Imaging, Three-Dimensional/methods , Radiometry/methods , Tomography, X-Ray Computed/methods , Algorithms , Calibration , Evaluation Studies as Topic , Film Dosimetry , Gamma Rays , Gels , Glass , Humans , Lasers , Light , Phantoms, Imaging , Plastics , Radiotherapy Planning, Computer-Assisted , Sensitivity and Specificity , X-Ray Film
6.
Med Phys ; 30(8): 2257-63, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12945992

ABSTRACT

A method for determining the gel sensitivity that is necessary for obtaining optimal image contrast in optical CT scanning of gel dosimeters is presented. The effective dynamic range of the OCTOPUS-ONE research scanner (MGS Research, Inc., Madison, CT) is analyzed. Optical density increments for selected straight-line paths across a gel cylinder to be scanned are calculated based on the optical properties of the polymer gel and the dose distribution from a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA). Maximum optical density increment across the entire gel is obtained by searching the gel cylinder over a set of transverse planes at different rotational angles. The application of this quantity as a criterion for optimizing the quality of the optical CT scanning is demonstrated through dose verification of two representative treatment plans. When the MU dependence of the dose distribution for a treatment plan is linear, as is the case for static field irradiation, it is possible to scale the treatment plan such that the intensity variation of the signals received by the photodetector spans its entire dynamic range. For treatment plans that are possibly nonlinear, IMRT plans, for example, modification of the sensitivity of the gel material is necessary for the high-dose signals to be collected at a certain signal-to-noise ratio. Results obtained using the optimized CT scanning approach are compared with those from the treatment planning system and the film measurement.


Subject(s)
Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Tomography, X-Ray Computed/methods , Algorithms , Gels , Humans , Models, Statistical , Phantoms, Imaging , Radiographic Image Enhancement/methods , Sensitivity and Specificity , Software
7.
Med Phys ; 30(2): 132-7, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12607830

ABSTRACT

Angioplasty balloons inflated with a solution of the beta-emitter Re-188 have been used for intravascular brachytherapy to prevent restenosis. Coronary stents are in extensive clinical use for the treatment of de novo atherosclerotic stenoses. In this study, the effect of an interposed stent on the dose distribution has been measured for Re-188 balloon sources using the proprietary BANG polymer gel dosimeters and He-Ne laser-beam optical CT scanner. In polymer gels, after ionizing radiation is absorbed, free-radical chain-polymerization of soluble acrylic monomers occurs to form an insoluble polymer. The BANG polymer gel dosimeters used in these measurements allow high resolution, precise, and accurate three-dimensional determination of dosimetry from a given source. Re-188 liquid balloons, with or without an interposed metallic stent, were positioned inside thin walled tubes placed in such a polymer dosimeter to deliver a prescribed dose (e.g., 15 Gy at 0.5 mm). After removing the balloon source, each irradiated sample was mounted in the optical scanner for scanning, utilizing a single compressed He-Ne laser beam and a single photodiode. In the absence of a stent, doses at points along the balloon axis, at radial distance 0.5 mm from the balloon surface and at least 2.5 mm from the balloon ends, are within 90% of the maximum dose. This uniformity of axial dose is independent of the balloon diameter and length. Dose rate and dose uniformity for intravascular brachytherapy with Re-188 balloon are altered by the presence of stent. The dose reduction by the stent is rather constant (13%-15%) at different radial distances. However, dose inhomogeneity caused by the stent decreases rapidly with radial distance.


Subject(s)
Brachytherapy/methods , Graft Occlusion, Vascular/radiotherapy , Radiometry/methods , Rhenium/therapeutic use , Stents , Tomography, X-Ray Computed/methods , Brachytherapy/instrumentation , Catheterization/instrumentation , Catheterization/methods , Gels , Graft Occlusion, Vascular/diagnostic imaging , Graft Occlusion, Vascular/surgery , Humans , Phantoms, Imaging , Polymers , Radioisotopes/therapeutic use , Radiometry/instrumentation , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Sensitivity and Specificity , Vascular Diseases/radiotherapy
8.
Phys Med Biol ; 47(11): L11-2; author reply L12-4, 2002 Jun 07.
Article in English | MEDLINE | ID: mdl-12108780
SELECTION OF CITATIONS
SEARCH DETAIL
...