Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37440382

ABSTRACT

Surface electromyography (sEMG) is a non-invasive technique that measures the electrical activity generated by the muscles using sensors placed on the skin. It has been widely used in the field of prosthetics and other assistive systems because of the physiological connection between muscle electrical activity and movement dynamics. However, most existing sEMG-based decoding algorithms show a limited number of detectable degrees of freedom that can be proportionally and simultaneously controlled in real-time, which limits the use of EMG in a wide range of applications, including prosthetics and other consumer-level applications (e.g., human/machine interfacing). In this work, we propose a new deep learning method that can decode and map the electrophysiological activity of the forearm muscles into proportional and simultaneous control of > 20 degrees of freedom of the human hand with real-time resolution and with latency within the neuromuscular delays (< 50 ms). We recorded the kinematics of the human hand during grasping, pinching, individual digit movements and three gestures at slow (0.5 Hz) and fast (0.75 Hz) movement speeds in healthy participants. We demonstrate that our neural network can predict the kinematics of the hand in real-time at a constant 32 predictions per second. To achieve this, we employed transfer learning and created a prediction smoothing algorithm for the output of the neural network that reconstructed the full geometry of the hand in three-dimensional Cartesian space in real-time. Our results demonstrate that high-density EMG signals from the forearm muscles contain almost all the information that is needed to predict the kinematics of the human hand. The proposed method has the capability of predicting the full kinematics of the human hand with real-time resolution with immediate translational impact in subjects with motor impairments.


Subject(s)
Artificial Limbs , Hand , Humans , Electromyography/methods , Hand/physiology , Muscle, Skeletal/physiology , Algorithms
2.
J Phys Condens Matter ; 35(40)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37369226

ABSTRACT

C60is a model system to study molecule-surface interactions and phase transitions due to its high symmetry and strong covalentπbonding within the molecule versus weak van-der-Waals coupling between neighboring molecules. In the solid, at room temperature, the molecule rotates and behaves as a sphere. However, the pentagonal and hexagonal atomic arrangement imposes deviations from the spherical symmetry that become important at low temperatures. The orientation of the C60can be viewed to represent classic spins. For geometrical reasons the preferred orientation of neighboring C60cannot be satisfied for all of the neighboring molecules, making C60a model for disordered spin systems with frustration. We study several molecular layers of C60islands on highly oriented pyrolytic graphite using scanning tunneling microscopy at liquid nitrogen temperatures. By imaging several layers we obtain a limited access to the three-dimensional rotational structure of the molecules in an island. We find one rotationally disordered layer between two partially rotationally ordered layers with hexagonal patterns. This exotic pattern shows an example of the local distribution of order and disorder in geometrically frustrated systems. Scanning tunneling spectroscopy data confirms the weak interactions of neighboring molecules.

3.
Phys Chem Chem Phys ; 24(46): 28371-28380, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36385639

ABSTRACT

We have investigated the self-assembly of the graphene nanoribbon molecular precursor 10,10'-dibromo-9,9'-bianthryl (DBBA) on Au(111) with frequency modulation scanning force microscopy (FM-SFM) at room temperature combined with ab initio calculations. For low molecular coverages, the molecules aggregate along the substrate herringbone reconstruction main directions while remaining mobile. At intermediate coverage, two phases coexist, zigzag stripes of monomer chains and decorated herringbones. For high coverage, the molecules assemble in a dimer-striped phase. The adsorption behaviour of DBBA molecules and their interactions are discussed and compared with the results from ab initio calculations.

4.
Nanoscale ; 9(23): 7868-7874, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28555693

ABSTRACT

In nano-structures such as thin films electron confinement results in the quantization of energy levels in the direction perpendicular to the film. The discretization of the energy levels leads to the oscillatory dependence of many properties on the film thickness due to quantum size effects. Pb on Si(111) is a specially interesting system because a particular relationship between the Pb atomic layer thickness and its Fermi wavelength leads to a periodicity of the oscillation of two atomic layers. Here, we demonstrate how the combination of scanning force microscopy (SFM) and Kelvin probe force microscopy (KPFM) provides a reliable method to monitor the quantum oscillations in the work function of Pb ultra-thin film nano-structures on Si(111). Unlike other techniques, with SFM/KPFM we directly address single Pb islands, determine their height while suppressing the influence of electrostatic forces, and, in addition, simultaneously evaluate their local work function by measurements close to equilibrium, without current-dependent and non-equilibrium effects. Our results evidence even-odd oscillations in the work function as a function of the film thickness that decay linearly with the film thickness, proving that this method provides direct and precise information on the quantum states.

5.
J Phys Chem Lett ; 7(3): 426-30, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26758503

ABSTRACT

Stepped well-ordered semiconductor surfaces are important as nanotemplates for the fabrication of 1D nanostructures. Therefore, a detailed understanding of the underlying stepped substrates is crucial for advances in this field. Although measurements of step edges are challenging for scanning force microscopy (SFM), here we present simultaneous atomically resolved SFM and Kelvin probe force microscopy (KPFM) images of a silicon vicinal surface. We find that the local contact potential difference is large at the bottom of the steps and at the restatoms on the terraces, whereas it drops at the upper part of the steps and at the adatoms on the terraces. For the interpretation of the data we performed density functional theory (DFT) calculations of the surface dipole distribution. The DFT images accurately reproduce the experiments even without including the tip in the calculations. This underlines that the high-resolution KPFM images are closely related to intrinsic properties of the surface and not only to tip-surface interactions.

6.
Beilstein J Nanotechnol ; 4: 406-17, 2013.
Article in English | MEDLINE | ID: mdl-23844347

ABSTRACT

The growth mode of small Ni clusters evaporated in UHV on HOPG has been investigated by scanning tunnelling microscopy. The size, the size distribution, and the shape of the clusters have been evaluated for different evaporation conditions and annealing temperatures. The total coverage of the surface strongly depends on the evaporation rate and time, whereas the influence of these parameters is low on the cluster size. Subsequent stepwise annealing has been performed. This results in a reduction of the total amount of the Ni clusters accompanied by a decreasing in the overall coverage of the surface. The diameter of the clusters appears to be less influenced by the annealing than is their height. Besides this, the cluster shape is strongly influenced, changing to a quasi-hexagonal geometry after the first annealing step, indicating single-crystal formation. Finally, a reproducible methodology for picking up individual clusters is reported [1].

7.
Beilstein J Nanotechnol ; 3: 186-91, 2012.
Article in English | MEDLINE | ID: mdl-22428110

ABSTRACT

The growth of pentacene on KCl(001) at submonolayer coverage was studied by dynamic scanning force microscopy. At coverages below one monolayer pentacene was found to arrange in islands with an upright configuration. The molecular arrangement was resolved in high-resolution images. In these images two different types of patterns were observed, which switch repeatedly. In addition, defects were found, such as a molecular vacancy and domain boundaries.

8.
Nano Lett ; 11(2): 574-8, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21171601

ABSTRACT

The electrical conductance G of mechanical break-junctions fabricated from the rare-earth metal dysprosium has been investigated at 4.2 K where Dy is in the ferromagnetic state. In addition to the usual variation of the conductance while breaking the wire mechanically, the conductance can be changed reproducibly by variation of the magnetic field H, due to the large magnetostriction of Dy. For a number of contacts, we observe discrete changes in G(H) in the range of several G(0) = 2e(2)/h. The behavior of G(H) and its angular dependence can be quantitatively understood by taking into account the magnetostrictive properties of Dy. This realization of a magnetostrictive few-atom switch demonstrates the possibility of reproducibly tuning the conductance of magnetic nanocontacts by a magnetic field.


Subject(s)
Dysprosium/chemistry , Magnetics/instrumentation , Microelectrodes , Nanostructures/chemistry , Nanotechnology/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Dysprosium/radiation effects , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Nanostructures/ultrastructure , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...