Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 54(7): 1895-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24890709

ABSTRACT

The paper aims at validating a recently proposed Semi Analytical Finite Element (SAFE) formulation coupled with a 2.5D Boundary Element Method (2.5D BEM) for the extraction of dispersion data in immersed waveguides of generic cross-section. To this end, three-dimensional vibroacoustic analyses are carried out on two waveguides of square and rectangular cross-section immersed in water using the commercial Finite Element software Abaqus/Explicit. Real wavenumber and attenuation dispersive data are extracted by means of a modified Matrix Pencil Method. It is demonstrated that the results obtained using the two techniques are in very good agreement.

2.
Ultrasonics ; 54(1): 408-18, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23932015

ABSTRACT

A fully coupled 2.5D formulation is proposed to compute the dispersive parameters of waveguides with arbitrary cross-section immersed in infinite inviscid fluids. The discretization of the waveguide is performed by means of a Semi-Analytical Finite Element (SAFE) approach, whereas a 2.5D BEM formulation is used to model the impedance of the surrounding infinite fluid. The kernels of the boundary integrals contain the fundamental solutions of the space Fourier-transformed Helmholtz equation, which governs the wave propagation process in the fluid domain. Numerical difficulties related to the evaluation of singular integrals are avoided by using a regularization procedure. To improve the numerical stability of the discretized boundary integral equations for the external Helmholtz problem, the so called CHIEF method is used. The discrete wave equation results in a nonlinear eigenvalue problem in the complex axial wavenumbers that is solved at the frequencies of interest by means of a contour integral algorithm. In order to separate physical from non-physical solutions and to fulfill the requirement of holomorphicity of the dynamic stiffness matrix inside the complex wavenumber contour, the phase of the radial bulk wavenumber is uniquely defined by enforcing the Snell-Descartes law at the fluid-waveguide interface. Three numerical applications are presented. The computed dispersion curves for a circular bar immersed in oil are in agreement with those extracted using the Global Matrix Method. Novel results are presented for viscoelastic steel bars of square and L-shaped cross-section immersed in water.


Subject(s)
Models, Theoretical , Rheology/instrumentation , Solutions/chemistry , Ultrasonography/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Scattering, Radiation , Sound
3.
Ultrasonics ; 53(7): 1227-41, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23642317

ABSTRACT

The paper presents a Semi-Analytical Finite Element (SAFE) formulation coupled with a 2.5D Boundary Element Method (BEM) for the computation of the dispersion properties of viscoelastic waveguides with arbitrary cross-section and embedded in unbounded isotropic viscoelastic media. Attenuation of guided modes is described through the imaginary component of the axial wavenumber, which accounts for material damping, introduced via linear viscoelastic constitutive relations, as well as energy loss due to radiation of bulk waves in the surrounding media. Energy radiation is accounted in the SAFE model by introducing an equivalent dynamic stiffness matrix for the surrounding medium, which is derived from a regularized 2.5D boundary element formulation. The resulting dispersive wave equation is configured as a nonlinear eigenvalue problem in the complex axial wavenumber. The eigenvalue problem is reduced to a linear one inside a chosen contour in the complex plane of the axial wavenumber by using a contour integral method. Poles of leaky and evanescent modes are obtained by choosing appropriately the phase of the wavenumbers normal to the interface in compliance with the nature of the waves in the surrounding medium. Finally, the obtained eigensolutions are post-processed to compute the energy velocity and the radiated wavefield in the surrounding domain. The reliability of the method is first validated on existing results for waveguides of circular cross sections embedded in elastic and viscoelastic media. Next, the potential of the proposed numerical framework is shown by computing the dispersion properties for a square steel bar embedded in grout and for an H-shaped steel pile embedded in soil.

SELECTION OF CITATIONS
SEARCH DETAIL
...