Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters










Publication year range
1.
NPJ Comput Mater ; 10(1): 151, 2024.
Article in English | MEDLINE | ID: mdl-39026599

ABSTRACT

Magnetic materials can display many solutions to the electronic-structure problem, corresponding to different local or global minima of the energy functional. In Hartree-Fock or density-functional theory different single-determinant solutions lead to different magnetizations, ionic oxidation states, hybridizations, and inter-site magnetic couplings. The vast majority of these states can be fingerprinted through their projection on the atomic orbitals of the magnetic ions. We have devised an approach that provides an effective control over these occupation matrices, allowing us to systematically explore the landscape of the potential energy surface. We showcase the emergence of a complex zoology of self-consistent states; even more so when semi-local density-functional theory is augmented - and typically made more accurate - by Hubbard corrections. Such extensive explorations allow to robustly identify the ground state of magnetic systems, and to assess the accuracy (or not) of current functionals and approximations.

2.
ACS Nano ; 18(25): 16101-16112, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38847372

ABSTRACT

One-dimensional materials have gained much attention in the last decades: from carbon nanotubes to ultrathin nanowires to few-atom atomic chains, these can all display unique electronic properties and great potential for next-generation applications. Exfoliable bulk materials could naturally provide a source for one-dimensional wires with a well-defined structure and electronics. Here, we explore a database of one-dimensional materials that could be exfoliated from experimentally known three-dimensional van der Waals compounds, searching for metallic wires that are resilient to Peierls distortions and could act as vias or interconnects for future downscaled electronic devices. As the one-dimensional nature makes these wires particularly susceptible to dynamical instabilities, we carefully characterize vibrational properties to identify stable phases and characterize electronic and dynamical properties. Our search discovers several stable wires; notably, we identify what could be the thinnest possible exfoliable metallic wire, CuC2, coming a step closer to the ultimate limit in material downscaling.

3.
J Chem Theory Comput ; 20(11): 4824-4843, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38820347

ABSTRACT

We present an orbital-resolved extension of the Hubbard U correction to density-functional theory (DFT). Compared to the conventional shell-averaged approach, the prediction of energetic, electronic and structural properties is strongly improved, particularly for compounds characterized by both localized and hybridized states in the Hubbard manifold. The numerical values of all Hubbard parameters are readily obtained from linear-response calculations. The relevance of this more refined approach is showcased by its application to bulk solids pyrite (FeS2) and pyrolusite (ß-MnO2), as well as to six Fe(II) molecular complexes. Our findings indicate that a careful definition of Hubbard manifolds is indispensable for extending the applicability of DFT+U beyond its current boundaries. The present orbital-resolved scheme aims to provide a computationally undemanding yet accurate tool for electronic structure calculations of charge-transfer insulators, transition-metal (TM) complexes and other compounds displaying significant orbital hybridization.

4.
J Chem Theory Comput ; 20(11): 4820-4823, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38771939

ABSTRACT

The present work proposes an extension to the approach of [Xi, C; et al. J. Chem. Theory Comput. 2022, 18, 6878] to calculate ion solvation free energies from first-principles (FP) molecular dynamics (MD) simulations of a hybrid solvation model. The approach is first re-expressed within the quasi-chemical theory of solvation. Then, to allow for longer simulation times than the original first-principles molecular dynamics approach and thus improve the convergence of statistical averages at a fraction of the original computational cost, a machine-learned (ML) energy function is trained on FP energies and forces and used in the MD simulations. The ML workflow and MD simulation times (≈200 ps) are adjusted to converge the predicted solvation energies within a chemical accuracy of 0.04 eV. The extension is successfully benchmarked on the same set of alkaline and alkaline-earth ions.

5.
J Mater Chem A Mater ; 12(18): 10773-10783, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38725523

ABSTRACT

Compliance with good research data management practices means trust in the integrity of the data, and it is achievable by full control of the data gathering process. In this work, we demonstrate tooling which bridges these two aspects, and illustrate its use in a case study of automated battery cycling. We successfully interface off-the-shelf battery cycling hardware with the computational workflow management software AiiDA, allowing us to control experiments, while ensuring trust in the data by tracking its provenance. We design user interfaces compatible with this tooling, which span the inventory, experiment design, and result analysis stages. Other features, including monitoring of workflows and import of externally generated and legacy data are also implemented. Finally, the full software stack required for this work is made available in a set of open-source packages.

6.
NPJ Comput Mater ; 10(1): 73, 2024.
Article in English | MEDLINE | ID: mdl-38751828

ABSTRACT

Why are materials with specific characteristics more abundant than others? This is a fundamental question in materials science and one that is traditionally difficult to tackle, given the vastness of compositional and configurational space. We highlight here the anomalous abundance of inorganic compounds whose primitive unit cell contains a number of atoms that is a multiple of four. This occurrence-named here the rule of four-has to our knowledge not previously been reported or studied. Here, we first highlight the rule's existence, especially notable when restricting oneself to experimentally known compounds, and explore its possible relationship with established descriptors of crystal structures, from symmetries to energies. We then investigate this relative abundance by looking at structural descriptors, both of global (packing configurations) and local (the smooth overlap of atomic positions) nature. Contrary to intuition, the overabundance does not correlate with low-energy or high-symmetry structures; in fact, structures which obey the rule of four are characterized by low symmetries and loosely packed arrangements maximizing the free volume. We are able to correlate this abundance with local structural symmetries, and visualize the results using a hybrid supervised-unsupervised machine learning method.

7.
Phys Rev Lett ; 132(4): 046701, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38335330

ABSTRACT

Magnetostriction results from the coupling between magnetic and elastic degrees of freedom. Though it is associated with a relatively small energy, we show that it plays an important role in determining the site of an implanted muon, so that the energetically favorable site can switch on crossing a magnetic phase transition. This surprising effect is demonstrated in the cubic rocksalt antiferromagnet MnO which undergoes a magnetostriction-driven rhombohedral distortion at the Néel temperature T_{N}=118 K. Above T_{N}, the muon becomes delocalized around a network of equivalent sites, but below T_{N} the distortion lifts the degeneracy between these equivalent sites. Our first-principles simulations based on Hubbard-corrected density-functional theory and molecular dynamics are consistent with the experimental data and help to resolve a long-standing puzzle regarding muon data on MnO, as well as having wider applicability to other magnetic oxides.

8.
Phys Rev Lett ; 131(16): 168001, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37925704

ABSTRACT

Unraveling the oxidation of graphitic lattice is of great interest for atomic-scale lattice manipulation. Herein, we build epoxy cluster, atom by atom, using Van der Waals' density-functional theory aided by Clar's aromatic π-sextet rule. We predict the formation of cyclic epoxy trimers and its linear chains propagating along the armchair direction of the lattice to minimize the system's energy. Using low-temperature scanning tunneling microscopy on oxidized graphitic lattice, we identify linear chains as bright features that have a threefold symmetry, and which exclusively run along the armchair direction of the lattice confirming the theoretical predictions.

9.
J Phys Chem C Nanomater Interfaces ; 127(45): 22015-22022, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38024196

ABSTRACT

The exposure of graphene to O3 results in functionalization of its lattice with epoxy, even at room temperature. This reaction is of fundamental interest for precise lattice patterning, however, is not well understood. Herein, using van der Waals density functional theory (vdW-DFT) incorporating spin-polarized calculations, we find that O3 strongly physisorbs on graphene with a binding energy of -0.46 eV. It configures in a tilted position with the two terminal O atoms centered above the neighboring graphene honeycombs. A dissociative chemisorption follows by surpassing an energy barrier of 0.75 eV and grafting an epoxy group on graphene reducing the energy of the system by 0.14 eV from the physisorbed state. Subsequent O3 chemisorption is preferred on the same honeycomb, yielding two epoxy groups separated by a single C-C bridge. We show that capturing the onset of spin in oxygen during chemisorption is crucial. We verify this finding with experiments where an exponential increase in the density of epoxy groups as a function of reaction temperature yields an energy barrier of 0.66 eV, in agreement with the DFT prediction. These insights will help efforts to obtain precise patterning of the graphene lattice.

10.
J Chem Theory Comput ; 19(20): 7097-7111, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37610300

ABSTRACT

Over the past decade we have developed Koopmans functionals, a computationally efficient approach for predicting spectral properties with an orbital-density-dependent functional framework. These functionals impose a generalized piecewise linearity condition to the entire electronic manifold, ensuring that orbital energies match the corresponding electron removal/addition energy differences (in contrast to semilocal DFT, where a mismatch between the two lies at the heart of the band gap problem and, more generally, the unreliability of Kohn-Sham orbital energies). This strategy has proven to be very powerful, yielding molecular orbital energies and solid-state band structures with comparable accuracy to many-body perturbation theory but at greatly reduced computational cost while preserving a functional formulation. This paper reviews the theory of Koopmans functionals, discusses the algorithms necessary for their implementation, and introduces koopmans, an open-source package that contains all of the code and workflows needed to perform Koopmans functional calculations and obtain reliable spectral properties of molecules and materials.

11.
Nano Lett ; 23(14): 6433-6439, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37460109

ABSTRACT

Black phosphorus (BP) stands out among two-dimensional (2D) semiconductors because of its high mobility and thickness dependent direct band gap. However, the quasiparticle band structure of ultrathin BP has remained inaccessible to experiment thus far. Here we use a recently developed laser-based microfocus angle resolved photoemission (µ-ARPES) system to establish the electronic structure of 2-9 layer BP from experiment. Our measurements unveil ladders of anisotropic, quantized subbands at energies that deviate from the scaling observed in conventional semiconductor quantum wells. We quantify the anisotropy of the effective masses and determine universal tight-binding parameters, which provide an accurate description of the electronic structure for all thicknesses.

12.
ACS Nano ; 17(12): 11268-11278, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37310789

ABSTRACT

Two-dimensional (2D) materials are among the most promising candidates for beyond-silicon electronic, optoelectronic, and quantum computing applications. Recently, their recognized importance sparked a push to discover and characterize novel 2D materials. Within a few years, the number of experimentally exfoliated or synthesized 2D materials went from a few to more than a hundred, with the number of theoretically predicted compounds reaching a few thousand. In 2018 we first contributed to this effort with the identification of 1825 compounds that are either easily (1036) or potentially (789) exfoliable from experimentally known 3D compounds. Here, we report on a major expansion of this 2D portfolio thanks to the extension of the screening protocol to an additional experimental database (MPDS) as well as the updated versions of the two databases (ICSD and COD) used in our previous work. This expansion leads to the discovery of an additional 1252 monolayers, bringing the total to 3077 compounds and, notably, almost doubling the number of easily exfoliable materials to 2004. We optimize the structural properties of all these monolayers and explore their electronic structure with a particular emphasis on those rare large-bandgap 2D materials that could be precious in isolating 2D field-effect-transistor channels. Finally, for each material containing up to 6 atoms per unit cell, we identify the best candidates to form commensurate heterostructures, balancing requirements on supercell size and minimal strain.

13.
Phys Rev Lett ; 130(16): 166301, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37154627

ABSTRACT

Despite considerable efforts, accurate computations of electron-phonon and carrier transport properties of low-dimensional materials from first principles have remained elusive. By building on recent advances in the description of long-range electrostatics, we develop a general approach to the calculation of electron-phonon couplings in two-dimensional materials. We show that the nonanalytic behavior of the electron-phonon matrix elements depends on the Wannier gauge, but that a missing Berry connection restores invariance to quadrupolar order. We showcase these contributions in a MoS_{2} monolayer, calculating intrinsic drift and Hall mobilities with precise Wannier interpolations. We also find that the contributions of dynamical quadrupoles to the scattering potential are essential, and that their neglect leads to errors of 23% and 76% in the room-temperature electron and hole Hall mobilities, respectively.

14.
J Chem Phys ; 158(14): 144113, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37061501

ABSTRACT

Koopmans spectral functionals are a class of orbital-density-dependent functionals designed to accurately predict spectroscopic properties. They do so markedly better than their Kohn-Sham density-functional theory counterparts, as demonstrated in earlier works on benchmarks of molecules and bulk systems. This work is a complementary study where-instead of comparing against real, many-electron systems-we test Koopmans spectral functionals on Hooke's atom, a toy two-electron system that has analytical solutions for particular strengths of its harmonic confining potential. As these calculations clearly illustrate, Koopmans spectral functionals do an excellent job of describing Hooke's atom across a range of confining potential strengths. This work also provides broader insights into the features and capabilities of Koopmans spectral functionals more generally.

15.
Chem Mater ; 35(4): 1702-1709, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36873625

ABSTRACT

CsSnI3 is a promising ecofriendly solution for energy harvesting technologies. It exists at room temperature in either a black perovskite polymorph or a yellow 1D double-chain, which irreversibly deteriorates in the air. In this work, we unveil the relative thermodynamic stability between the two structures with a first-principles sampling of the CsSnI3 finite-temperature phase diagram, discovering how it is driven by anomalously large quantum and anharmonic ionic fluctuations. Thanks to a comprehensive treatment of anharmonicity, the simulations deliver a remarkable agreement with known experimental data for the transition temperatures of the orthorhombic, rhombohedral, and cubic perovskite structures and the thermal expansion coefficient. We disclose how the perovskite polymorphs are the ground state above 270 K and discover an abnormal decrease in heat capacity upon heating in the cubic black perovskite. Our results also significantly downplay the Cs+ rattling modes' contribution to mechanical instability. The remarkable agreement with experiments validates our methodology, which can be systematically applied to all metal halides.

16.
Phys Chem Chem Phys ; 25(13): 9061-9072, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36919455

ABSTRACT

Accurate first-principles predictions of the structural, electronic, magnetic, and electrochemical properties of cathode materials can be key in the design of novel efficient Li-ion batteries. Spinel-type cathode materials LixMn2O4 and LixMn1.5Ni0.5O4 are promising candidates for Li-ion battery technologies, but they present serious challenges when it comes to their first-principles modeling. Here, we use density-functional theory with extended Hubbard functionals-DFT+U+V with on-site U and inter-site V Hubbard interactions-to study the properties of these transition-metal oxides. The Hubbard parameters are computed from first-principles using density-functional perturbation theory. We show that while U is crucial to obtain the right trends in properties of these materials, V is essential for a quantitative description of the structural and electronic properties, as well as the Li-intercalation voltages. This work paves the way for reliable first-principles studies of other families of cathode materials without relying on empirical fitting or calibration procedures.

17.
NPJ Comput Mater ; 9(1): 208, 2023.
Article in English | MEDLINE | ID: mdl-38666055

ABSTRACT

Maximally-localized Wannier functions (MLWFs) are broadly used to characterize the electronic structure of materials. Generally, one can construct MLWFs describing isolated bands (e.g. valence bands of insulators) or entangled bands (e.g. valence and conduction bands of insulators, or metals). Obtaining accurate and compact MLWFs often requires chemical intuition and trial and error, a challenging step even for experienced researchers and a roadblock for high-throughput calculations. Here, we present an automated approach, projectability-disentangled Wannier functions (PDWFs), that constructs MLWFs spanning the occupied bands and their complement for the empty states, providing a tight-binding picture of optimized atomic orbitals in crystals. Key to the algorithm is a projectability measure for each Bloch state onto atomic orbitals, determining if that state should be kept identically, discarded, or mixed into the disentanglement. We showcase the accuracy on a test set of 200 materials, and the reliability by constructing 21,737 Wannier Hamiltonians.

18.
NPJ Comput Mater ; 9(1): 106, 2023.
Article in English | MEDLINE | ID: mdl-38666060

ABSTRACT

Predicting the thermal conductivity of glasses from first principles has hitherto been a very complex problem. The established Allen-Feldman and Green-Kubo approaches employ approximations with limited validity-the former neglects anharmonicity, the latter misses the quantum Bose-Einstein statistics of vibrations-and require atomistic models that are very challenging for first-principles methods. Here, we present a protocol to determine from first principles the thermal conductivity κ(T) of glasses above the plateau (i.e., above the temperature-independent region appearing almost without exceptions in the κ(T) of all glasses at cryogenic temperatures). The protocol combines the Wigner formulation of thermal transport with convergence-acceleration techniques, and accounts comprehensively for the effects of structural disorder, anharmonicity, and Bose-Einstein statistics. We validate this approach in vitreous silica, showing that models containing less than 200 atoms can already reproduce κ(T) in the macroscopic limit. We discuss the effects of anharmonicity and the mechanisms determining the trend of κ(T) at high temperature, reproducing experiments at temperatures where radiative effects remain negligible.

19.
NPJ Comput Mater ; 9(1): 10, 2023.
Article in English | MEDLINE | ID: mdl-38666054

ABSTRACT

Superionics are fascinating materials displaying both solid- and liquid-like characteristics: as solids, they respond elastically to shear stress; as liquids, they display fast-ion diffusion at normal conditions. In addition to such scientific interest, superionics are technologically relevant for energy, electronics, and sensing applications. Characterizing and understanding their elastic properties is, e.g., urgently needed to address their feasibility as solid-state electrolytes in all-solid-state batteries. However, static approaches to elasticity assume well-defined reference positions around which atoms vibrate, in contrast with the quasi-liquid motion of the mobile ions in fast ionic conductors. Here, we derive the elastic tensors of superionics from ensemble fluctuations in the isobaric-isothermal ensemble, exploiting extensive Car-Parrinello simulations. We apply this approach to paradigmatic Li-ion conductors, and complement with a block analysis to compute statistical errors. Static approaches sampled over the trajectories often overestimate the response, highlighting the importance of a dynamical treatment in determining elastic tensors in superionics.

20.
NPJ Comput Mater ; 9(1): 194, 2023.
Article in English | MEDLINE | ID: mdl-38666058

ABSTRACT

Dimensionality provides a clear fingerprint on the dispersion of infrared-active, polar-optical phonons. For these phonons, the local dipoles parametrized by the Born effective charges drive the LO-TO splitting of bulk materials; this splitting actually breaks down in two-dimensional materials. Here, we develop the theory for one-dimensional (1D) systems-nanowires, nanotubes, and atomic and polymeric chains. Combining an analytical model with the implementation of density-functional perturbation theory in 1D boundary conditions, we show that the dielectric splitting in the dispersion relations collapses as x2log(x) at the zone center. The dielectric properties and the radius of the 1D materials are linked by the present work to these red shifts, opening infrared and Raman characterization avenues.

SELECTION OF CITATIONS
SEARCH DETAIL
...