Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Biobehav Rev ; 152: 105292, 2023 09.
Article in English | MEDLINE | ID: mdl-37353047

ABSTRACT

Animal models of selective breeding for extremes in emotionality are a strong experimental approach to model psychopathologies. They became indispensable in order to increase our understanding of neurobiological, genetic, epigenetic, hormonal, and environmental mechanisms contributing to anxiety disorders and their association with depressive symptoms or social deficits. In the present review, we extensively discuss Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour on the elevated plus-maze. After 30 years of breeding, we can confirm the prominent differences between HAB and LAB rats in trait anxiety, which are accompanied by consistent differences in depressive-like, social and cognitive behaviours. We can further confirm a single nucleotide polymorphism in the vasopressin promotor of HAB rats causative for neuropeptide overexpression, and show that low (or high) anxiety and fear levels are unlikely due to visual dysfunctions. Thus, HAB and LAB rats continue to exist as a reliable tool to study the multiple facets underlying the pathology of high trait anxiety and its comorbidity with depression-like behaviour and social dysfunctions.


Subject(s)
Behavior, Animal , Selective Breeding , Rats , Animals , Rats, Wistar , Depression/genetics , Anxiety/genetics , Comorbidity , Disease Models, Animal
2.
BMC Neurosci ; 23(1): 47, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879657

ABSTRACT

BACKGROUND: Stem cell-based therapy has received considerable attention as a potential candidate in the treatment of ischemic stroke; however, employing an appropriate type of stem cells and an effective delivery route are still challenging. In the present study, we investigated the therapeutic effect of safe, noninvasive, and brain-targeted intranasal administration of hair follicle-derived stem cells (HFSCs) in a rat model of ischemic stroke. METHODS: Stem cells were obtained from the adult rat hair follicles. In experiment 1, stroke was induced by 30 min middle cerebral artery occlusion (MCAO) and stem cells were intranasally transplanted immediately after ischemia. In experiment 2, stroke was induced by 120 min MCAO and stem cells were administered 24 h after cerebral ischemia. In all experimental groups, neurological performance, short-term spatial working memory and infarct volume were assessed. Moreover, relative expression of major trophic factors in the striatum and cortex was evaluated by the quantitative PCR technique. The end point of experiment 1 was day 3 and the end point of experiment 2 was day 15. RESULTS: In both experiments, intranasal administration of HFSCs improved functional performance and decreased infarct volume compared to the MCAO rats. Furthermore, NeuN and VEGF expression were higher in the transplanted group and stem cell therapy partially prevented BDNF and neurotrophin-3 over-expression induced by cerebral ischemia. CONCLUSIONS: These findings highlight the curative potential of HFSCs following intranasal transplantation in a rat model of ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Administration, Intranasal , Animals , Brain Ischemia/therapy , Hair Follicle , Infarction, Middle Cerebral Artery/therapy , Rats , Stem Cells , Stroke/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...