Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Plant Sci ; 14: 1165847, 2023.
Article in English | MEDLINE | ID: mdl-37936940

ABSTRACT

Brown rot, caused by the Monilinia spp., is the disease that causes the greatest losses in stone fruit worldwide. Currently, M. fructicola has become the dominant species in the main peach production area in Spain. The fruit cuticle is the first barrier of protection against external aggressions and may have a key role in the susceptibility to brown rot. However, information on the role of skin fruit on the resistance to brown rot in peach is scarce. Previous genetic analyses in peach have demonstrated that brown rot resistance is a complex and quantitative trait in which different fruit parts and resistance mechanisms are involved. To search for genomic areas involved in the control of the cultivar susceptibility to brown rot and to elucidate the role of fruit skin against this infection, we have studied, for two consecutive seasons (2019 and 2020), the fruit susceptibility to M. fructicola, together with fruit cuticle thickness (CT) and density (CD), in a collection of 80 Spanish and 5 foreign peach cultivars from the National Peach Collection at CITA (Zaragoza, Spain). Brown rot incidence, lesion diameter, and severity index were calculated after 5 days of inoculation on non-wounded fruit. The peach collection has also been genotyped using the new peach SNP chip (9 + 9K). Genotypic and phenotypic data have been used to perform a genome-wide association analysis (GWAS). Phenotyping has shown a wide variability on the brown rot susceptibility within the Spanish germplasm as well as on CD and CT. The GWAS results have identified several significant SNPs associated with disease severity index (DSI), CD, and CT, five of which were considered as reliable SNP-trait associations. A wide protein network analysis, using 127 genes within the regions of the reliable SNPs and previously identified candidate genes (169) associated with Monilinia spp. resistance, highlighted several genes involved in classical hypersensitive response (HR), genes related to wax layers as ceramidases and lignin precursors catalyzers, and a possible role of autophagy during brown rot infection. This work adds relevant information on the complexity resistance mechanisms to brown rot infection in peach fruits and the genetics behind them.

2.
Sci Rep ; 12(1): 7481, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35523985

ABSTRACT

Expression quantitative trait loci (eQTLs) are associations between genetic variants, such as Single Nucleotide Polymorphisms (SNPs), and gene expression. eQTLs are an important tool to understand the genetic variance of gene expression of complex phenotypes. eQTLs analyses are common in biomedical models but are scarce in woody crop species such as fruit trees or grapes. In this study, a comprehensive bioinformatic analysis was conducted leveraging with expression data from two different growth stages, around ripening onset, of 10 genotypes of grape (Vitis vinifera L.). A total of 2170 cis-eQTL were identified in 212 gene modulated at ripening onset. The 48% of these DEGs have a known function. Among the annotated protein-coding genes, terpene synthase, auxin-regulatory factors, GRFS, ANK_REP_REGION domain-containing protein, Kinesin motor domain-containing protein and flavonol synthase were noted. This new inventory of cis-eQTLs influencing gene expression during fruit ripening will be an important resource to examine variation for this trait and will help to elucidate the complex genetic architecture underlying this process in grape.


Subject(s)
Vitis , Computational Biology , Fruit/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Vitis/metabolism
3.
Front Plant Sci ; 13: 854770, 2022.
Article in English | MEDLINE | ID: mdl-35386674

ABSTRACT

Peach [Prunus persica (L.) Batsch] is one of the most important stone fruits species in world production. Spanish peach production is currently the second largest in the world and the available cultivars in Spain includes a great source of genetic diversity with variability in fruit quality traits and postharvest disorders tolerance. In order to explore the genetic diversity and single nucleotide polymorphism (SNP)-trait associations in the Spanish germplasm, the new peach 18K SNP v2 array was used to genotype 287 accessions belonging to the two National Peach Germplasm Collections placed at the Agrifood Research and Technology Centre of Aragon (CITA) and at the Experimental Station of Aula Dei (EEAD)-CSIC. The high density of the new SNP array allowed the identification of 30 groups of synonymies, which had not been identified before using low-density markers. In addition, a possible large-scale molecular event in 'Starcrest', a sport of 'Springcrest', was detected showing a possible chromosome replacement of a 13.5 Mb region. Previous suggestions about Spanish diversification regions agreed with our genetic diversity and linkage disequilibrium (LD) decay results using high-density markers. A genome-wide association study (GWAS) detected 34 significant SNP-trait association with the type of leaf glands (TLG), fruit hairiness (FH), and flesh texture (FT). The impact of the significant SNPs was studied with SnpEff. Candidate genes encode several important family proteins involved in trichome formation and powdery mildew resistance (linked to TLG in peach). The genetic distance among cultivars obtained, together with SNP-trait associations found, provide new knowledge for marker-assisted selection and crossing approaches in peach breeding programmes.

SELECTION OF CITATIONS
SEARCH DETAIL
...