Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674971

ABSTRACT

Fillers have been widely used in natural rubber (NR) products. They are introduced to serve as a strategy for modifying the final properties of NR vulcanizates. Silica and calcium carbonate (CaCO3) are among the fillers of choice when the color of the products is concerned. In this case, a special focus was to compare the vulcanizing efficiency of NR filled with two different filler types, namely nano-sized silica and micrometer-sized CaCO3. This study focused on the effects of the loading level (10-50 parts per hundred parts of rubber, phr) on the final properties and structural changes of NR composites. The results indicated that increased filler loading led to higher curing torques and stiffness of the rubber composites irrespective of the type of filler used. The better filler dispersion was achieved in composites filled with CaCO3 which is responsible for less polarity of CaCO3 compared to silica. Good filler distribution enhanced filler-matrix interactions, improving swelling resistance and total crosslink density, and delaying stress relaxation. The modulus and tensile strength of both composites also improved over the content of fillers. The CaCO3-filled composites reached their maximum tensile strength at 40 phr, exceeding, by roughly 88%, the strength of an unfilled sample. Conversely, the maximum tensile strength of silica-filled NR was at 20 phr and was only slightly higher than that of its unfilled counterpart. This discrepancy was ascribed to the stronger rubber-filler interactions in cases with CaCO3 filler. Effective rubber-filler interactions improved strain-induced crystallization, increasing crystallinity during stretching and reducing the strain at which crystallization begins. In contrast, large silica aggregates with poor dispersion reduced the overall crosslink density, and degraded the thermomechanical properties, tensile properties, and strain-induced crystallization ability of the NR. The results clearly indicate that CaCO3 should be favored over silica as a filler in the production of some rubber products where high performance was not the main characteristic.

2.
Polymers (Basel) ; 15(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959903

ABSTRACT

Nanocomposite foams of natural rubber (NR) with 5 phr of two kinds of nanofillers, nanoclay (NC) and cellulose nanofiber (CNF), were produced using the latex mixing method and foaming with azodicarbonamide. The effect of the nanofiller on the structure and mechanical properties of NR foams was investigated through SEM, TEM, tensile tests, WAXD, and compression set measurements. Smaller cells with a narrower distribution were attained in the NC/NR foam when compared to the NR and CNF/NR foams, and the expansion ratio was larger due to the suppression of the shrinkage in the NC/NR foam. The foaming of the NR nanocomposites reduced the size of the filler aggregates and improved the dispersion and alignment of nanofillers in the cell walls. The addition of NC and CNF enhanced the tensile strength of the NR foam by 139% and 62%, respectively, without sacrificing the excellent strain of the NR, due to the acceleration of the strain-induced crystallization and small size of the filler aggregates. The compression set of the NR foam could also be reduced in the NC/NR foam compared with the NR and CNF/NR foams.

3.
Polymers (Basel) ; 15(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36904478

ABSTRACT

As most plastic materials disintegrate without being properly reused after they are discarded, this present study developed a novel thermoplastic elastomer (TPE) using recycled high-density polyethylene (rHDPE) and natural rubber (NR) with kenaf fibre as a sustainable filler. Apart from being used as filler, this present study aimed to examine the use of kenaf fibre as a natural anti-degradant as well. The results indicated that the tensile strength of the samples was found to have significantly decreased after 6 months of natural weathering and had decreased by a further 30% after 12 months due to the chain scission of the polymeric backbones and the degradation of the kenaf fibre. However, the composites that contained kenaf fibre significantly retained their properties post-natural weathering. In terms of tensile strength and elongation at the break, the addition of only 10 phr of kenaf increased the retention properties by 25% and 5%, respectively. This is noteworthy as kenaf fibre also contains a certain amount of natural anti-degradants. Therefore, as the kenaf fibre improves the weather resistance of composites, plastic manufacturers could use it as either a filler or a natural anti-degradant.

4.
Polymers (Basel) ; 15(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36904515

ABSTRACT

We investigated the reinforcement behavior of small amounts of chemically unmodified cellulose nanofiber (CNF) in eco-friendly natural rubber (NR) nanocomposites. For this purpose, NR nanocomposites filled with 1, 3, and 5 parts per hundred rubber (phr) of cellulose nanofiber (CNF) were prepared by a latex mixing method. By using TEM, a tensile test, DMA, WAXD, a bound rubber test, and gel content measurements, the effect of CNF concentration on the structure-property relationship and reinforcing mechanism of the CNF/NR nanocomposite was revealed. Increasing the content of CNF resulted in decreased dispersibility of the nanofiber in the NR matrix. It was found that the stress upturn in the stress-strain curves was remarkably enhanced when the NR was combined with 1-3 phr CNF, and a noticeable increase in tensile strength (an approximately 122% increase in tensile strength over that of NR) was observed without sacrificing the flexibility of the NR in the NR filled with 1 phr CNF, though no acceleration in their strain-induced crystallization was observed. Since the NR chains were not inserted in the uniformly dispersed CNF bundles, the reinforcement behavior by the small content of CNF might be attributed to the shear stress transfer at the CNF/NR interface through the interfacial interaction (i.e., physical entanglement) between the nano-dispersed CNFs and the NR chains. However, at a higher CNF filling content (5 phr), the CNFs formed micron-sized aggregates in the NR matrix, which significantly induced the local stress concentration and promoted strain-induced crystallization, causing a substantially increased modulus but reduced the strain at the rupture of the NR.

5.
Polymers (Basel) ; 15(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36850322

ABSTRACT

Natural rubber (NR) latex foam is one of the rubber products that are increasingly in demand in the market. This is simply because of its lightweight, good thermal insulation, and resilience. The applications of NR latex foam are mostly for pillows and mattresses. This has resulted in these products requiring antibacterial performance which is very important for the safety of the end-users. In this study, the antibacterial NR latex foam was prepared by incorporating the silver-doped zinc oxide (Ag-doped ZnO) into the NR latex foam. Ag-doped ZnO was prepared by microwave-assisted method and then characterized through morphological characteristics and X-ray diffraction (XRD). The content of Ag doped onto ZnO was designed by varying the AgNO3 content at 15 wt%, 50 wt%, and 100 wt% of ZnO. The results confirmed that the Ag was successfully doped onto ZnO. The silver particles were found to be in the 40-50 nm range, where the size of ZnO ranges between 300 and 400 nm, and the Ag attached to the ZnO particles. The XRD patterns of Ag-doped ZnO correspond to planes of hexagonal wurtzite ZnO structure and cubic metallic Ag. This Ag-doped ZnO was further added to NR latex foam. It was observed that Ag-doped ZnO did not affect the physical properties of the NR latex foam. However, it is clear that both the inhibition zone and percent reduction of bacteria (e.g., E. coli and S. aureus) were enhanced by the addition of Ag-doped ZnO. It showed a decrease in the amount of cell growth over contact time. The content of 100 wt% AgNO3 could reduce E. coli and S. aureus up to 64.72% and 58.90%, respectively, when samples were maintained for 24 h. This study provides a scientific understanding of how Ag-doped ZnO could facilitate the development of eventual rubber foam products based on the respective results.

6.
Polymers (Basel) ; 14(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36433023

ABSTRACT

A massive demand for rubber-based goods, particularly gloves, was sparked by the emergence of the COVID-19 epidemic worldwide. This resulted in thousands of tons of gloves being scrapped due to the constant demand for the items, endangering our environment in a grave way. In this work, we aimed to focus on the utilization of waste nitrile gloves (r-NBR) as a component blended with natural rubber (NR). The life span and other related properties of the blend can be improved by proper control of the chemical recipe. This study assessed three types of crosslinking systems, namely sulfur (S), peroxide (DCP), and mixed sulfur/peroxide (S/DCP) systems. The results indicate that choosing S/DCP strongly affected the tensile strength of the blend, especially at relatively high contents of r-NBR, improving the strength by 40-60% for cases with 25-35 phr of r-NBR. The improvement depended on the crosslink types induced in the blends. It is interesting to highlight that the thermal resistance of the blends was significantly improved by using the S/DCP system. This indicates that the life span of this blend can be prolonged by using a proper curing system. Overall, the S/DCP showed the best results, superior to those with S and DCP crosslinking systems.

7.
Polymers (Basel) ; 14(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36145891

ABSTRACT

Natural rubber (NR) nanocomposites reinforced with five parts per hundred rubber (phr) of two different nano-fillers, i.e., nanoclay (abbrev. NC) and cellulose nanofiber (abbrev. CNF), were prepared by using latex mixing approach, followed by mill-compounding and molding. The morphology, stress-strain behavior, strain-induced crystallization, and bound rubber of the NR nanocomposites were systematically compared through TEM, tensile test, WAXS, DMA, and bound rubber measurement. The aggregated CNFs were observed in the NR matrix, while the dispersed nanosized clay tactoids were detected across the NR phase. The reinforcement effects of NC and CNF were clearly distinct in the NR nanocomposites. At the same nano-filler content, the addition of NC and CNF effectively accelerated strain-induced crystallization of NR. The high tensile strength obtained in the NC-filled NR nanocomposite was attributed to strain-induced crystallization of NR accelerated by well-dispersed NC. However, the larger tensile modulus and low strain for the CNF-filled NR were related to the formation of immobilized NR at the interface between CNF aggregate and NR. The immobilization effect of NR at the CNF surface offered by a mutual entanglement of CNF aggregate and NR chain led to local stress concentration and accelerated strain-induced crystallization of CNF/NR nanocomposite. From the present study, the NR nanocomposites combined with 5 phr CNF shows high-tensile modulus and acceptable breaking tensile stress and strain, suggesting the application of CNF/NR based nanocomposite in automotive and stretchable sensors for next-generation electronic devices.

8.
Polymers (Basel) ; 14(13)2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35808758

ABSTRACT

Natural rubber latex (NRL) is a polymer (blend) extracted from the milky sap of para rubber trees. Due to being a natural biopolymer, NRL contains various proteins that may be allergenic to humans when in skin contact. Attempts have been made to use deproteinized natural rubber (DPNR) instead of impure NRL, and the final properties of these two types of rubber tend to differ. Thus, the correlations between their chemistry and properties are of focal interest in this work. DPNR was prepared by incubating NRL with urea, followed by aqueous washing/centrifugation. The physical, mechanical, and dynamic properties of incubated NRL before and after washing/centrifugation were examined to distinguish its influences from those of incubation with urea. According to the findings, the proteins, phospholipids, and chain entanglements were responsible for natural polymer networks formed in the NR. Although the proteins were largely removed from the latex by incubation, the properties of high ammonia natural rubber (HANR) were still maintained in its DPNR form, showing that other network linkages dominated over those contributed by the proteins. In the incubated latex, the naturally occurring linkages were consistently reduced with the number of wash cycles.

9.
Polymers (Basel) ; 15(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36616378

ABSTRACT

Natural rubber (NR) is incompatible with hydrophilic additives like halloysite nanotubes (HNT) due to their different polarity. The silane coupling agent is the ideal component to include in such a compound to solve this problem. Many types of silane are available for polymer composites depending on their functionalities. This work aimed to tune it to the composite based on NR and HNT. Four different silanes, namely Bis[3- (Triethoxysilyl)Propyl]Tetrasulfide (TESPT), 3-Aminopropyl triethoxysilane (APTES), N-[3-(Trimethoxysilyl)Propyl] Ethylenediamine (AEAPTMS), and Vinyltrimethoxysilane (VTMS) were used. Here, the mechanical properties were used to assess the properties, paying close attention to how their reinforcement influenced their crystallization behavior after stretching. It was revealed that adding silane coupling agents greatly improved the composites' modulus, tensile strength, and tear strength. From the overall findings, AEAPTMS was viable for NR/HNT composites. This was in direct agreement with the interactions between NR and HNT that silanes had encouraged. The findings from stress-strain curves describing the crystallization of the composites are in good agreement with the findings from synchrotron wide-angle X-ray scattering (WAXS). The corresponding silanes have substantially aided the strain-induced crystallization (SIC) of composites.

10.
Polymers (Basel) ; 13(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34685294

ABSTRACT

Halloysite Nanotubes (HNT) are chemically similar to clay, which makes them incompatible with non-polar rubbers such as natural rubber (NR). Modification of NR into a polar rubber is of interest. In this work, Epoxidized Natural Rubber (ENR) was prepared in order to obtain a composite that could assure filler-matrix compatibility. However, the performance of this composite was still not satisfactory, so an alternative to the basic HNT filler was pursued. The surface area of HNT was further increased by etching with acid; the specific surface increased with treatment time. The FTIR spectra confirmed selective etching on the Al-OH surface of HNT with reduction in peak intensity in the regions 3750-3600 cm-1 and 825-725 cm-1, indicating decrease in Al-OH structures. The use of acid-treated HNT improved modulus, tensile strength, and tear strength of the filled composites. This was attributed to the filler-matrix interactions of acid-treated HNT with ENR. Further evidence was found from the Payne effect being reduced to 44.2% through acid treatment of the filler. As for the strain-induced crystallization (SIC) in the composites, the stress-strain curves correlated well with the degree of crystallinity observed from synchrotron wide-angle X-ray scattering.

11.
Polymers (Basel) ; 13(4)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671304

ABSTRACT

Carbonized natural filler can offer the production of low cost composites with an eco-friendliness value. The evolving field of electronics encourages the exploration of more functions and potential for carbonized natural filler, such as by modifying its surface chemistry. In this work, we have performed surface modification on carbonized wood fiber (CWF) prior to it being used as filler in the ethylene vinyl acetate (EVA) composite system. Zinc chloride (ZnCl2) with various contents (2 to 8 wt%) was used to surface modify the CWF and the effects of ZnCl2 composition on the surface morphology and chemistry of the CWF filler were investigated. Furthermore, the absorptive, mechanical, thermal, and electrical properties of the EVA composites containing CWF-ZnCl2 were also analyzed. SEM images indicated changes in the morphology of the CWF while FTIR analysis proved the presence of ZnCl2 functional groups in the CWF. EVA composites incorporating the CWF-ZnCl2 showed superior mechanical, thermal and electrical properties compared to the ones containing the CWF. The optimum content of ZnCl2 was found to be 6 wt%. Surface modification raised the electrical conductivity of the EVA/CWF composite through the development of conductive deposits in the porous structure of the CWF as a channel for ionic and electronic transfer between the CWF and EVA matrix.

SELECTION OF CITATIONS
SEARCH DETAIL
...