Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1354297, 2024.
Article in English | MEDLINE | ID: mdl-38444857

ABSTRACT

Background: To investigate the potential of Manuka honey (MH) as an immunomodulatory agent in colorectal cancer (CRC) and dissect the underlying molecular and cellular mechanisms. Methods: MH was administered orally over a 4 week-period. The effect of MH treatment on microbiota composition was studied using 16S rRNA sequencing of fecal pellets collected before and after treatment. Pretreated mice were implanted with CRC cells and followed for tumor growth. Tumors and lymphoid organs were analyzed by flow cytometry (FACS), immunohistochemistry and qRT-PCR. Efficacy of MH was also assessed in a therapeutic setting, with oral treatment initiated after tumor implantation. We utilized IFNγ-deficient mice to determine the importance of interferon signaling in MH-induced immunomodulation. Results: Pretreatment with MH enhanced anti-tumor responses leading to suppression of tumor growth. Evidence for enhanced tumor immunogenicity included upregulated MHC class-II on intratumoral macrophages, enhanced MHC class-I expression on tumor cells and increased infiltration of effector T cells into the tumor microenvironment. Importantly, oral MH was also effective in retarding tumor growth when given therapeutically. Transcriptomic analysis of tumor tissue highlighted changes in the expression of various chemokines and inflammatory cytokines that drive the observed changes in tumor immunogenicity. The immunomodulatory capacity of MH was abrogated in IFNγ-deficient mice. Finally, bacterial 16S rRNA sequencing demonstrated that oral MH treatment induced unique changes in gut microbiota that may well underlie the IFN-dependent enhancement in tumor immunogenicity. Conclusion: Our findings highlight the immunostimulatory properties of MH and demonstrate its potential utilization in cancer prevention and treatment.


Subject(s)
Gastrointestinal Microbiome , Honey , Neoplasms , Animals , Mice , RNA, Ribosomal, 16S/genetics , Administration, Oral , Tumor Microenvironment
2.
Front Immunol ; 13: 1020574, 2022.
Article in English | MEDLINE | ID: mdl-36405698

ABSTRACT

Manuka honey (MH) is known for its wound-healing, anti-microbial, anti-oxidant and anti-tumor properties. However, there is conflicting evidence regarding the role of MH in inflammatory responses, with some studies highlighting its pro-inflammatory capacity and others showing that it has a predominantly anti-inflammatory activity. The current study is aimed at characterizing the immunomodulatory capacity of MH using both in vitro and in vivo approaches, focusing on the underlying mechanisms. Treatment of RAW 264.7 macrophages with 1% MH (w/v) resulted in a significant increase in the gene expression (~26-fold) and secretion (~27-fold) of tumor necrosis factor-alpha (TNF-α). Similarly, an increase was observed in the gene expression of other inflammatory cytokines including interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS), as well as the chemokines; (C-X-C motif) ligand 2 (CXCL2) and (C-C) motif ligand 2 (CCL2). Using an in vivo model, intraperitoneal (i.p.) administration of MH in C57BL/6 mice elicited a peritoneal response characterized by a significant expansion in the number of peritoneal exudate cells (PECs), which was mainly due to a 35-fold increase in the recruitment of neutrophils. Importantly, this response was evident in toll-like receptor 4 (TLR4)-defective C3H/HeJ mice, indicating that the observed stimulatory effect occurs independently of TLR4 and unlikely to be mediated by any lipopolysaccharide (LPS) contaminant. MH administration also led to changes in the phenotypic expression and functional maturation of peritoneal macrophages, as evidenced by a shift towards the CD11blo F4/80lo phenotype and an increase in the expression of major histocompatibility complex (MHC) class II proteins. In contrast, the MH-initiated peritoneal response was largely abrogated in mice deficient in myeloid differentiation primary response 88 (MyD88) protein, a critical adaptor of most TLR signaling pathways. Thus, the current findings help to characterize the immunostimulatory properties of MH and their dependence on TLR signaling, and highlight the potential utility of MH as an immunomodulatory agent in a variety of disorders.


Subject(s)
Honey , Toll-Like Receptor 4 , Mice , Animals , Toll-Like Receptors , Ligands , Mice, Inbred C3H , Mice, Inbred C57BL , Myeloid Differentiation Factor 88 , Interleukin-6
3.
Food Chem ; 396: 133666, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35841681

ABSTRACT

In this study, attempts were made to utilize date by-product (date fruit pomace; DFP). This study aimed to investigate the health-promoting benefits of the fermented and non-fermented DFP before in vitro digestion and after (bioaccessible fraction). Untargeted metabolomic analyses for bioaccessible fractions were performed by UPLC-QTOF. DPPH percentages were 89.7%-90.3%, 90.1%-91.3%, and 90.8%-91.3% in the control, I. orientalis, and P. kudriazevii samples, respectively, before digestion; α-glucosidase inhibition before digestion was 1.9%-24.4%, 16.3%-30.0%, and 21.3%-31.3%, respectively; antimicrobial activities were 6.1%-13.3%, 13.7%-25.7%, and 20.6%-28.0% against E. coli O157:H7 and 2.2%-11.9%, 7.2%-20.7%, and 11.9%-29.2% against L. monocytogenes, respectively. The DPPH scavenging percentages were ∼63% lower in the bioaccessible fraction. The differentially regulated metabolites classes were benzene and derivatives, amino acids, peptides and analogs, organic acids, and phenols. This study revealed that the fermented DFP exhibited higher health properties than control.


Subject(s)
Escherichia coli O157 , Phoeniceae , Antioxidants/chemistry , Fermentation , Fruit/chemistry , Metabolomics , Phenols/analysis , Phoeniceae/metabolism , Saccharomyces cerevisiae/metabolism
4.
Microorganisms ; 10(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35208844

ABSTRACT

The ability to perform effectively in the gastrointestinal tract (GIT) is one of the most significant criteria in the selection of potential probiotic bacteria. Thus, the present study aimed to investigate the potential probiotic characteristics of some selected lactic acid bacteria (LAB) isolated from vegetable products. Probiotic characteristics included tolerance to acid and bile, cholesterol-removing ability, bile salt hydrolysis, resistance against lysozyme and antibiotics, production of exopolysaccharides (EPS), antimicrobial and hemolytic activities, and cell surface characteristics (auto-aggregation, co-aggregation, and hydrophobicity). The survival rate of isolates after G120 ranged from 8.0 to 8.6 Log10 CFU/mL. After the intestinal phase (IN-120), the bacterial count ranged from 7.3 to 8.5 Log10 CFU/mL. The bile tolerance rates ranged from 17.8 to 51.1%, 33.6 to 63.9%, and 55.9 to 72.5% for cholic acid, oxgall, and taurocholic acid, respectively. Isolates F1, F8, F23, and F37 were able to reduce cholesterol (>30%) from the broth. The auto-aggregation average rate increased significantly after 24 h for all isolates, while two isolates showed the highest hydrophobicity values. Moreover, isolates had attachment capabilities comparable to those of HT-29 cells, with an average of 8.03 Log10 CFU/mL after 2 h. All isolates were resistant to lysozyme and vancomycin, and 8 out of the 17 selected isolates displayed an ability to produce exopolysaccharides (EPS). Based on 16S rRNA sequencing, LAB isolates were identified as Enterococcus faecium, E. durans, E. lactis, and Pediococcus acidilactici.

5.
Front Immunol ; 13: 1017780, 2022.
Article in English | MEDLINE | ID: mdl-36605208

ABSTRACT

The use of immune checkpoint inhibitors to treat cancer resulted in unprecedented and durable clinical benefits. However, the response rate among patients remains rather modest. Previous work from our laboratory demonstrated the efficacy of using attenuated bacteria as immunomodulatory anti-cancer agents. The current study investigated the potential of utilizing a low dose of attenuated Salmonella typhimurium to enhance the efficacy of PD-L1 blockade in a relatively immunogenic model of colon cancer. The response of MC38 tumors to treatment with αPD-L1 monoclonal antibody (mAb) was variable, with only 30% of the mice being responsive. Combined treatment with αPD-L1 mAb and Salmonella resulted in 75% inhibition of tumor growth in 100% of animals. Mechanistically, the enhanced response correlated with a decrease in the percentage of tumor-associated granulocytic cells, upregulation in MHC class II expression by intratumoral monocytes and an increase in tumor infiltration by effector T cells. Collectively, these alterations resulted in improved anti-tumor effector responses and increased apoptosis within the tumor. Thus, our study demonstrates that a novel combination treatment utilizing attenuated Salmonella and αPD-L1 mAb could improve the outcome of immunotherapy in colorectal cancer.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Animals , Mice , B7-H1 Antigen , Immunotherapy/methods , Antineoplastic Agents/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Colonic Neoplasms/drug therapy , Salmonella
6.
Oncol Lett ; 22(5): 761, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34539865

ABSTRACT

Negative elongation factor-B (NELF-B), also known as cofactor of BRCA1 (COBRA1), is one of the four subunits of the NELF complex. It interacts with BRCA1, in addition to other transcription complexes in various tissues. The NELF complex represses the transcription of several genes by stalling RNA polymerase II during the early phase of transcription elongation. The role of NELF-B in liver cancer and hepatocellular carcinoma (HCC), the most prevalent type of liver cancer, remains to be elucidated. It has been previously demonstrated that silencing of NELF-B inhibits the proliferation and migration of HepG2 cells. The present study aimed to investigate the consequences of ectopic expression and silencing of NELF-B in liver cancer HepG2 and SNU449 cell lines. Functional assays were performed to examine the effects on gene and protein expression, viability, migration and invasion of cells. Overexpression of NELF-B did not alter the proliferation and migration of HepG2 cells, or the expression of tested genes, indicating that overexpression alone may not be sufficient for altering these features in HepG2 cells. By contrast, knockdown of NELF-B in SNU449 cells resulted in decreased cell proliferation, together with induction of apoptosis and decreased expression levels of Ki-67 and survivin, which are markers of proliferation and inhibition of apoptosis, respectively. Additionally, silencing of NELF-B resulted in a significant decrease in the hallmarks of epithelial-mesenchymal transition (EMT), including cell migration and invasion, and decreased the expression levels of EMT markers, such as N-cadherin, vimentin and ß-catenin. Decreased expression levels of forkhead box F2 transcription factor and increased mRNA levels of trefoil factor 1, a putative tumor suppressor, were also detected following the silencing of NELF-B. The current results demonstrated that NELF-B enhanced the manifestation of most hallmarks of cancer, including cell proliferation, migration, invasion and inhibition of apoptosis, indicating its critical role in the progression of HCC.

7.
Pathol Oncol Res ; 27: 584710, 2021.
Article in English | MEDLINE | ID: mdl-34257532

ABSTRACT

The therapeutic potential of mesenchymal stem cells (MSCs) for various malignancies is currently under investigation due to their unique properties. However, many discrepancies regarding their anti-tumoral or pro-tumoral properties have raised uncertainty about their application for anti-cancer therapies. To investigate, if the anti-tumoral or pro-tumoral properties are subjective to the type of MSCs under different experimental conditions we set out these experiments. Three treatments namely cell lysates (CL), serum-free conditioned media and FBS conditioned media (FBSCM) from each of Wharton's Jelly MSCs and Bone Marrow-MSCs were applied to evaluate the anti-tumoral or pro-tumoral effect on the glioma cells (U87MG). The functional analysis included; Morphological evaluation, proliferation and migration potential, cell cycle analysis, and apoptosis for glioma cells. The fibroblast cell line was added to investigate the stimulatory or inhibitory effect of treatments on the proliferation of the normal cell. We found that cell lysates induced a generalized inhibitory effect on the proliferation of the glioma cells and the fibroblasts from both types of MSCs. Similarly, both types of conditioned media from two types of MSCs exerted the same inhibitory effect on the proliferation of the glioma cells. However, the effect of two types of conditioned media on the proliferation of fibroblasts was stimulatory from BM-MSCs and variable from WJ-MSCs. Moreover, all three treatments exerted a likewise inhibitory effect on the migration potential of the glioma cells. Furthermore, we found that the cell cycle was arrested significantly at the G1 phase after treating cells with conditioned media which may have led to inhibit the proliferative and migratory abilities of the glioma cells (U87MG). We conclude that cell extracts of MSCs in the form of secretome can induce specific anti-tumoral properties in serum-free conditions for the glioma cells particularly the WJ-MSCs and the effect is mediated by the cell cycle arrest at the G1 phase.


Subject(s)
Antineoplastic Agents/metabolism , Bone Marrow Cells/metabolism , Cell Cycle Checkpoints/drug effects , Mesenchymal Stem Cells/metabolism , Wharton Jelly/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bone Marrow Cells/cytology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Glioma/pathology , Humans , Mesenchymal Stem Cells/cytology , Secretome/metabolism , Wharton Jelly/cytology
8.
Nutrients ; 13(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924384

ABSTRACT

Honey has exerted a high impact in the field of alternative medicine over many centuries. In addition to its wound healing, anti-microbial and antioxidant properties, several lines of evidence have highlighted the efficiency of honey and associated bioactive constituents as anti-tumor agents against a range of cancer types. Mechanistically, honey was shown to inhibit cancer cell growth through its pro-apoptotic, anti-proliferative and anti-metastatic effects. However, the potential of honey to regulate anti-tumor immune responses is relatively unexplored. A small number of in vitro and in vivo studies have demonstrated the ability of honey to modulate the immune system by inducing immunostimulatory as well as anti-inflammatory effects. In the present review, we summarize the findings from different studies that aimed to investigate the immunomodulatory properties of honey and its flavonoid components in relation to cancer. While these studies provide promising data, additional research is needed to further elucidate the immunomodulatory properties of honey, and to enable its utilization as an adjuvant therapy in cancer.


Subject(s)
Flavonoids/pharmacology , Honey , Immunologic Factors/pharmacology , Neoplasms/therapy , Polyphenols/pharmacology , Animals , Apitherapy/methods , Chemotherapy, Adjuvant/methods , Disease Models, Animal , Flavonoids/therapeutic use , Humans , Immunologic Factors/therapeutic use , Inflammation Mediators/metabolism , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasms/immunology , Polyphenols/therapeutic use
9.
Int J Mol Sci ; 20(18)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31491838

ABSTRACT

Aberrantly high levels of tyrosine-phosphorylated signal transducer and activator of transcription 3 (p-STAT3) are found constitutively in ~50% of human lung and breast cancers, acting as an oncogenic transcription factor. We previously demonstrated that Manuka honey (MH) inhibits p-STAT3 in breast cancer cells, but the exact mechanism remained unknown. Herein, we show that MH-mediated inhibition of p-STAT3 in breast (MDA-MB-231) and lung (A549) cancer cell lines is accompanied by decreased levels of gp130 and p-JAK2, two upstream components of the IL-6 receptor (IL-6R) signaling pathway. Using an ELISA-based assay, we demonstrate that MH binds directly to IL-6Rα, significantly inhibiting (~60%) its binding to the IL-6 ligand. Importantly, no evidence of MH binding to two other cytokine receptors, IL-11Rα and IL-8R, was found. Moreover, MH did not alter the levels of tyrosine-phosphorylated or total Src family kinases, which are also constitutively activated in cancer cells, suggesting that signaling via other growth factor receptors is unaffected by MH. Binding of five major MH flavonoids (luteolin, quercetin, galangin, pinocembrin, and chrysin) was also tested, and all but pinocembrin could demonstrably bind IL-6Rα, partially (30-35%) blocking IL-6 binding at the highest concentration (50 µM) used. In agreement, each flavonoid inhibited p-STAT3 in a dose-dependent manner, with estimated IC50 values in the 3.5-70 µM range. Finally, docking analysis confirmed the capacity of each flavonoid to bind in an energetically favorable configuration to IL-6Rα at a site predicted to interfere with ligand binding. Taken together, our findings identify IL-6Rα as a direct target of MH and its flavonoids, highlighting IL-6R blockade as a mechanism for the anti-tumor activity of MH, as well as a viable therapeutic target in IL-6-dependent cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Honey , Receptors, Interleukin-6/antagonists & inhibitors , STAT3 Transcription Factor/antagonists & inhibitors , Antineoplastic Agents/chemistry , Autocrine Communication/drug effects , Biological Products/chemistry , Cell Line, Tumor , Humans , Janus Kinase 2/metabolism , Phosphorylation/drug effects , Protein Binding , STAT3 Transcription Factor/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...