Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Artif Life ; 18(1): 53-90, 2012.
Article in English | MEDLINE | ID: mdl-22035079

ABSTRACT

To synthesize natural or artificial life, it is critically important to understand the design principles of how biochemical networks generate particular cellular functions and evolve complex systems in comparison with engineering systems. Cellular systems maintain their robustness in the face of perturbations arising from environmental and genetic variations. In analogy to control engineering architectures, the complexity of modular structures within a cell can be attributed to the necessity of achieving robustness. To reveal such biological design, the E. coli ammonia assimilation system is analyzed, which consists of complex but highly structured modules: the glutamine synthetase (GS) activity feedback control module with bifunctional enzyme cascades for catalyzing reversible reactions, and the GS synthesis feedback control module with positive and negative feedback loops. We develop a full-scale dynamic model that unifies the two modules, and we analyze its robustness and fine tuning with respect to internal and external perturbations. The GS activity control is added to the GS synthesis module to improve its transient response to ammonia depletion, compensating the tradeoffs of each module, but its robustness to internal perturbations is lost. These findings suggest some design principles necessary for the synthesis of life.


Subject(s)
Ammonia/metabolism , Escherichia coli/metabolism , Models, Biological
2.
Nucleic Acids Res ; 35(20): e134, 2007.
Article in English | MEDLINE | ID: mdl-17940089

ABSTRACT

Biochemical network maps are helpful for understanding the mechanism of how a collection of biochemical reactions generate particular functions within a cell. We developed a new and computationally feasible notation that enables drawing a wide resolution map from the domain-level reactions to phenomenological events and implemented it as the extended GUI network constructor of CADLIVE (Computer-Aided Design of LIVing systEms). The new notation presents 'Domain expansion' for proteins and RNAs, 'Virtual reaction and nodes' that are responsible for illustrating domain-based interaction and 'InnerLink' that links real complex nodes to virtual nodes to illustrate the exact components of the real complex. A modular box is also presented that packs related reactions as a module or a subnetwork, which gives CADLIVE a capability to draw biochemical maps in a hierarchical modular architecture. Furthermore, we developed a pathway search module for virtual knockout mutants as a built-in application of CADLIVE. This module analyzes gene function in the same way as molecular genetics, which simulates a change in mutant phenotypes or confirms the validity of the network map. The extended CADLIVE with the newly proposed notation is demonstrated to be feasible for computational simulation and analysis.


Subject(s)
Metabolic Networks and Pathways , Software , Animals , Computer Simulation , Mammals , Protein Biosynthesis , Protein Structure, Tertiary , Proteins/chemistry , Proteins/metabolism , RNA/chemistry , RNA/metabolism , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...