Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Synapse ; 74(12): e22180, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32644234

ABSTRACT

Pharmacological magnetic resonance imaging (phMRI) allows the visualization of brain pharmacological effects of drugs using functional MRI (fMRI). phMRI can help us facilitate central nervous system (CNS) drug development. However, there have been few studies demonstrating the dose relationship of the fMRI response induced by CNS drugs to underlying target engagement or behavioral efficacy. To clarify these relationships, we examined receptor occupancy measurements using positron emission tomography (PET) (n = 3~5), fMRI (n = 5~8) and a cataleptic behavior (n = 6) with raclopride, a dopamine D2 receptor antagonist (8, 20, and 200 µg/kg) on Wistar rats. Dopamine D2 receptor occupancy was increased dose dependently by raclopride (41.8 ± 2.7%, 8 µg/kg; 64.9 ± 2.8%, 20 µg/kg; 83.1 ± 3.0%, 200 µg/kg). phMRI study revealed significant positive responses to raclopride at 200 µg/kg specifically in the striatum and nucleus accumbens, related to dopaminergic system. Slight fMRI responses were observed at 20 µg/kg in some areas corresponding to the striatum and nucleus accumbens. There were no noticeable fMRI responses at 8 µg/kg raclopride administration. Raclopride at 200 µg/kg significantly increased the cataleptic score, although, at 8 and 20 µg/kg, raclopride had no significant effects. These findings showed that raclopride-induced fMRI responses were observed at doses inducing cataleptic behavior and high D2 receptor occupancy, suggesting that phMRI can be useful for dose selection in clinical trial as an evaluation method of brain activity, which reflects behavioral responses induced by target engagements.


Subject(s)
Corpus Striatum/metabolism , Dopamine Antagonists/pharmacokinetics , Freezing Reaction, Cataleptic/drug effects , Nucleus Accumbens/metabolism , Raclopride/pharmacokinetics , Animals , Corpus Striatum/diagnostic imaging , Corpus Striatum/physiology , Magnetic Resonance Imaging , Male , Nucleus Accumbens/diagnostic imaging , Nucleus Accumbens/physiology , Positron-Emission Tomography , Protein Binding , Rats , Rats, Wistar , Receptors, Dopamine D2/metabolism
2.
Synapse ; 73(12): e22126, 2019 12.
Article in English | MEDLINE | ID: mdl-31397936

ABSTRACT

(R,S)-ketamine exerts robust antidepressant effects in patients with depression when given at sub-anesthetic doses. Each of the enantiomers in this racemic mixture, (R)-ketamine and (S)-ketamine, have been reported to exert antidepressant effects individually. However, the neuropharmacological effects of these enantiomers and the mechanisms underlying their antidepressive actions have not yet been fully elucidated. Therefore, we investigated the effect of (R,S)-, (R)-, and (S)-ketamine on brain activity by functional MRI (fMRI) in conscious rats and compared these with that of N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 (n = 5~7). We also assessed their pharmacokinetic profiles (n = 4) and their behavioral effects (n = 7~9). This pharmacological MRI study revealed a significant positive response to (S)-ketamine specifically in the cortex, nucleus accumbens and striatum. In contrast, negative fMRI responses were observed in various brain regions after (R)-ketamine administration. (R,S)-ketamine, evoked significant positive fMRI responses specifically in the cortex, nucleus accumbens and striatum, and this fMRI response pattern was comparable with that of (S)-ketamine. MK-801-induced similar fMRI response pattern to (S)-ketamine. The fMRI responses to (S)-ketamine and MK-801 showed differential temporal profiles, which corresponded with brain concentration profiles. (S)-ketamine and MK-801 significantly increased locomotor activity, while (R)-ketamine produced no noticeable change. (R,S)-ketamine tended to increase locomotor activity. Our novel fMRI findings show that (R)-ketamine and (S)-ketamine induce completely different fMRI response patterns on rat, and that the response produced by the latter is similar to that elicited by an NMDAR antagonist. Our findings provide insight into the antidepressant mechanism of (R,S)-ketamine.


Subject(s)
Brain/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Ketamine/pharmacology , Animals , Antidepressive Agents/pharmacology , Brain/diagnostic imaging , Dizocilpine Maleate/pharmacology , Magnetic Resonance Imaging , Male , Motor Activity/drug effects , Rats , Rats, Wistar
3.
Ann Nucl Med ; 31(8): 596-604, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28695498

ABSTRACT

OBJECTIVE: 18F-fluoromisonidazole (FMISO), a well-known PET imaging probe for diagnosis of hypoxia, is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of the nitro group. Previously, we showed the majority of 18F-FMISO was incorporated into low-molecular-weight metabolites in hypoxic tumors, and the glutathione conjugate of reduced FMISO (amino-FMISO-GS) distributed in the tumor hypoxic regions as revealed by imaging mass spectrometry (IMS). The present study was conducted to clarify whether FMISO is metabolized to amino-FMISO-GS within tumor cells and how amino-FMISO-GS contributes to FMISO accumulation in hypoxic cells. We also evaluated the relationship between FMISO accumulation and the glutathione conjugation-related factors in the cells. METHODS: Tumor cells (FaDu, LOVO, and T24) were treated with 18F-FMISO and incubated under normoxic or hypoxic conditions for 4 h. The FMISO metabolites were analyzed with LC-ESI-MS. Several glutathione conjugation-related factors of tumor cells were evaluated in vitro. FaDu tumor-bearing mice were intravenously injected with 18F-FMISO and the tumors were excised at 4 h post-injection. Autoradiography, IMS and histologic studies were performed. RESULTS: Amino-FMISO-GS was the main contributor to FMISO incorporated in hypoxic FaDu cells in vitro and in vivo. Total FMISO uptake levels and amino-FMISO-GS levels were highest in FaDu, followed by LOVO, and then T24 (total uptake: 0.851 ± 0.009 (FaDu), 0.617 ± 0.021 (LOVO) and 0.167 ± 0.006 (T24) % dose/mg protein; amino-FMISO-GS: 0.502 ± 0.035 (FaDu), 0.158 ± 0.013 (LOVO), and 0.007 ± 0.001 (T24) % dose/mg protein). The glutathione level of FaDu was significantly higher than those of LOVO and T24. The enzyme activity of glutathione-S-transferase catalyzing the glutathione conjugation reaction in FaDu was similar levels to that in LOVO, and was higher than that in T24. Quantitative RT-PCR analysis revealed that the expression levels of efflux transporters of the glutathione conjugate (multidrug resistance-associated protein 1) were lowest in FaDu, followed by LOVO, and then T24. CONCLUSIONS: FMISO accumulates in hypoxic cells through reductive metabolism followed by glutathione conjugation. We illustrated the possibility that increased production and decreased excretion of amino-FMISO-GS contribute to FMISO accumulation in tumor cells under hypoxic conditions.


Subject(s)
Glutathione/metabolism , Misonidazole/analogs & derivatives , Neoplasms, Experimental/metabolism , Oxygen/metabolism , Positron-Emission Tomography/methods , Tumor Hypoxia , Cell Line, Tumor , Humans , Metabolic Clearance Rate , Misonidazole/pharmacokinetics , Neoplasms, Experimental/diagnostic imaging , Protein Binding , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
4.
PLoS One ; 11(8): e0161639, 2016.
Article in English | MEDLINE | ID: mdl-27580239

ABSTRACT

Hypoxia, or low oxygen concentration, is a key factor promoting tumor progression and angiogenesis and resistance of cancer to radiotherapy and chemotherapy. 2-Nitroimidazole-based agents have been widely used in pathological and nuclear medicine examinations to detect hypoxic regions in tumors; in particular, pimonidazole is used for histochemical staining of hypoxic regions. It is considered to accumulate in hypoxic cells via covalent binding with macromolecules or by forming reductive metabolites after reduction of its nitro group. However, the detailed mechanism of its accumulation remains unknown. In this study, we investigated the accumulation mechanism of pimonidazole in hypoxic tumor tissues in a mouse model by mass spectrometric analyses including imaging mass spectrometry (IMS). Pimonidazole and its reductive metabolites were observed in the tumor tissues. However, their locations in the tumor sections were not similar to the positively stained areas in pimonidazole-immunohistochemistry, an area considered hypoxic. The glutathione conjugate of reduced pimonidazole, a low-molecular-weight metabolite of pimonidazole, was found in tumor tissues by LC-MS analysis, and our IMS study determined that the intratumor localization of the glutathione conjugate was consistent with the area positively immunostained for pimonidazole. We also found complementary localization of the glutathione conjugate and reduced glutathione (GSH), implying that formation of the glutathione conjugate occurred in the tumor tissue. These results suggest that in hypoxic tumor cells, pimonidazole is reduced at its nitro group, followed by conjugation with GSH.


Subject(s)
Glutathione/metabolism , Mass Spectrometry , Neoplasms, Experimental , Nitroimidazoles , Animals , Cell Hypoxia/drug effects , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Nitroimidazoles/pharmacokinetics , Nitroimidazoles/pharmacology
5.
Sci Rep ; 5: 16802, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26582591

ABSTRACT

(18)F-fluoromisonidazole (FMISO) has been widely used as a hypoxia imaging probe for diagnostic positron emission tomography (PET). FMISO is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of its nitro group. However, its detailed accumulation mechanism remains unknown. Therefore, we investigated the chemical forms of FMISO and their distributions in tumours using imaging mass spectrometry (IMS), which visualises spatial distribution of chemical compositions based on molecular masses in tissue sections. Our radiochemical analysis revealed that most of the radioactivity in tumours existed as low-molecular-weight compounds with unknown chemical formulas, unlike observations made with conventional views, suggesting that the radioactivity distribution primarily reflected that of these unknown substances. The IMS analysis indicated that FMISO and its reductive metabolites were nonspecifically distributed in the tumour in patterns not corresponding to the radioactivity distribution. Our IMS search found an unknown low-molecular-weight metabolite whose distribution pattern corresponded to that of both the radioactivity and the hypoxia marker pimonidazole. This metabolite was identified as the glutathione conjugate of amino-FMISO. We showed that the glutathione conjugate of amino-FMISO is involved in FMISO accumulation in hypoxic tumour tissues, in addition to the conventional mechanism of FMISO covalent binding to macromolecules.


Subject(s)
Diagnostic Imaging/methods , Hypoxia/diagnostic imaging , Mass Spectrometry/methods , Metabolome , Misonidazole/analogs & derivatives , Molecular Probes/metabolism , Animals , Male , Metabolomics , Mice, Inbred BALB C , Mice, Nude , Misonidazole/metabolism , Molecular Weight , Neoplasms/diagnostic imaging , Radionuclide Imaging , Reproducibility of Results , Tandem Mass Spectrometry , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...