Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 11(5): 369, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32409664

ABSTRACT

TDP-43 pathology is a disease hallmark that characterizes both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). TDP-43 undergoes several posttranslational modifications that can change its biological activities and its aggregative propensity, which is a common hallmark of different neurodegenerative conditions. New evidence is provided by the current study pointing at TDP-43 acetylation in ALS cellular models. Using both in vitro and in vivo approaches, we demonstrate that TDP-43 interacts with histone deacetylase 1 (HDAC1) via RRM1 and RRM2 domains, that are known to contain the two major TDP-43 acetylation sites, K142 and K192. Moreover, we show that TDP-43 is a direct transcriptional activator of CHOP promoter and this activity is regulated by acetylation. Finally and most importantly, we observe both in cell culture and in Drosophila that a HDCA1 reduced level (genomic inactivation or siRNA) or treatment with pan-HDAC inhibitors exert a protective role against WT or pathological mutant TDP-43 toxicity, suggesting TDP-43 acetylation as a new potential therapeutic target. HDAC inhibition efficacy in neurodegeneration has long been debated, but future investigations are warranted in this area. Selection of more specific HDAC inhibitors is still a promising option for neuronal protection especially as HDAC1 appears as a downstream target of both TDP- 43 and FUS, another ALS-related gene.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Cell Death/drug effects , DNA-Binding Proteins/pharmacology , Histone Deacetylase 1/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Cell Death/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Histone Deacetylase 1/genetics , Humans , Inclusion Bodies/metabolism , Mice , Mutation/genetics
2.
Neuroscience ; 390: 1-11, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30134203

ABSTRACT

Neurodegenerative disorders, including Amyotrophic Lateral Sclerosis (ALS), have been associated to alterations in chromatin structure resulting in long-lasting changes in gene expression. ALS is predominantly a sporadic disease and environmental triggers may be involved in its onset. In this respect, alterations in the epigenome can provide the key to transform the genetic information into phenotype. In this paper, we demonstrate that two modifications associated with transcriptional activation, namely dimethylation of lysine 4 on H3 tail (H3K4me2) and phospho-acetylation of serine 10 and lysine 14 on H3 tail (H3K14ac-S10ph), and two modifications associated to transcriptional repression, namely trimethylation of lysine 9 on H3 tail (H3K9me3) and DNA methylation are selectively altered in cellular and animal model of ALS. These results reinforce the idea that epigenetic therapy may represent a potential and attractive approach for ALS treatment.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Epigenesis, Genetic , Protein Processing, Post-Translational , Animals , Cell Line, Tumor , DNA Methylation , DNA-Binding Proteins/metabolism , HEK293 Cells , Histones/metabolism , Humans , Mice, Transgenic , RNA-Binding Protein FUS/metabolism , Superoxide Dismutase-1/metabolism
3.
PLoS One ; 12(6): e0179082, 2017.
Article in English | MEDLINE | ID: mdl-28582422

ABSTRACT

Mutations in LRRK2 play a critical role in both familial and sporadic Parkinson's disease (PD). Up to date, the role of LRRK2 in PD onset and progression remains largely unknown. However, experimental evidence highlights a critical role of LRRK2 in the control of vesicle trafficking that in turn may regulate different aspects of neuronal physiology. We have analyzed the role of LRRK2 in regulating dopamine receptor D1 (DRD1) and D2 (DRD2) trafficking. DRD1 and DRD2 are the most abundant dopamine receptors in the brain. They differ in structural, pharmacological and biochemical properties, as well as in localization and internalization mechanisms. Our results indicate that disease-associated mutant G2019S LRRK2 impairs DRD1 internalization, leading to an alteration in signal transduction. Moreover, the mutant forms of LRRK2 affect receptor turnover by decreasing the rate of DRD2 trafficking from the Golgi complex to the cell membrane. Collectively, our findings are consistent with the conclusion that LRRK2 influences the motility of neuronal vesicles and the neuronal receptor trafficking. These findings have important implications for the complex role that LRRK2 plays in neuronal physiology and the possible pathological mechanisms that may lead to neuronal death in PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Neurons/metabolism , Parkinson Disease/genetics , Receptors, Dopamine D1/genetics , Receptors, Dopamine D2/genetics , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Disease Models, Animal , Gene Expression Regulation , Gene Knock-In Techniques , Golgi Apparatus/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Mice , Mice, Inbred C57BL , Mutation , Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Transport , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Signal Transduction
4.
Rev Neurosci ; 28(2): 133-144, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28030361

ABSTRACT

Redox processes are key events in the degenerative cascade of many adult-onset neurodegenerative diseases (NDs), but the biological relevance of a single redox change is often dependent on the redox couple involved and on its subcellular origin. The biosensors based on engineered fluorescent proteins (redox-sensitive GFP [roGFP]) offer a unique opportunity to monitor redox changes in both physiological and pathological contexts in living animals and plants. Here, we review the use of roGFPs to monitor oxidative stress in different three adult-onset NDs: Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Despite the many differences spanning from incidence to onset, the hypotheses on biological processes underlying both sporadic and familiar ND forms in humans outline a model in which noncompeting mechanisms are likely to converge in various unsuccessful patterns to mediate the selective degeneration of a specific neuronal population. roGFPs, targeted to different cell compartments, are successfully used as specific markers of cell toxicity, induced by expression of causative genes linked to a determined ND. We also report the use of roGFP to monitor oxidative stress induced by the expression of the ALS-causative gene SOD1.


Subject(s)
Alzheimer Disease/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Parkinson Disease/metabolism , Alzheimer Disease/diagnosis , Amyotrophic Lateral Sclerosis/diagnosis , Animals , Brain/metabolism , Brain/physiopathology , Humans , Parkinson Disease/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...