Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 946: 174471, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964384

ABSTRACT

Rising ocean temperatures, a consequence of anthropogenic climate change, are increasing the frequency, intensity, and magnitude of extreme marine heatwaves (MHWs). These persistent anomalous warming events can have severe ecological and socioeconomic impacts, threatening ecologically and economically vital organisms such as bivalves and the ecosystems they support. Developing robust environmental and social frameworks to enhance the resilience and adaptability of bivalve aquaculture is critical to ensuring the sustainability of this crucial food source. This review synthesizes the current understanding of the physiological and ecological impacts of MHWs on commercially important bivalve species farmed globally. We propose an integrated risk assessment framework that encompasses environmental monitoring, farm-level preparedness planning, and community-level social support systems to safeguard bivalve aquaculture. Specifically, we examine heatwave prediction models, local mitigation strategies, and social programs that could mitigate the impacts on bivalve farms and vulnerable coastal communities economically dependent on this fishery. At the farm level, adaptation strategies such as selective breeding for heat-tolerant strains, optimized site selection, and adjustments to culture practices can improve survival outcomes during MHWs. Robust disease surveillance and management programs are essential for early detection and rapid response. Furthermore, we highlight the importance of stakeholder engagement, knowledge exchange, and collaborative governance in developing context-specific, inclusive, and equitable safeguard systems. Proactive measures, such as advanced forecasting tools like the California Current Marine Heat Wave Tracker developed by NOAA's Southwest Fisheries Science Center, enable preemptive action before losses occur. Coordinated preparation and response, underpinned by continuous monitoring and adaptive management, promise to protect these climate-vulnerable food systems and coastal communities. However, sustained research, innovation, and cross-sector collaboration are imperative to navigate the challenges posed by our rapidly changing oceans.

2.
Mar Environ Res ; 198: 106561, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788476

ABSTRACT

Ocean acidity extremes (OAX) events are becoming more frequent and intense in coastal areas in the context of climate change, generating widespread consequences on marine calcifying organisms and ecosystems they support. While transgenerational exposure to end-of-century scenario of ocean acidification (i.e., at pH 7.7) can confer calcifiers resilience, whether and to what extent such resilience holds true under OAX conditions is still poorly understood. Here, we found that transgenerational exposure of Ruditapes philippinarum to OAX resulted in cessation of embryonic development at the trochophore stage, implying devastating consequences of OAX on marine bivalves. We identified a large number of differentially expressed genes in embryos following transgenerationally exposed to OAX, which were mainly significantly enriched in KEGG pathways related to energy metabolism, immunity and apoptosis. These pathways were significantly activated, and genes involved in these processes were up-regulated, indicating strong cellular stress responses to OAX. These findings demonstrate that transgenerational exposure to OAX can result in embryonic developmental cessation by severe cellular damages, implying that transgenerational acclimation maybe not a panacea for marine bivalves to cope with OAX, and hence urgent efforts are required to understand consequences of intensifying OAX events in coastal ecosystems.


Subject(s)
Bivalvia , Climate Change , Embryonic Development , Seawater , Transcriptome , Animals , Seawater/chemistry , Transcriptome/drug effects , Bivalvia/genetics , Bivalvia/drug effects , Embryonic Development/drug effects , Hydrogen-Ion Concentration , Oceans and Seas
3.
Mar Pollut Bull ; 204: 116523, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815474

ABSTRACT

Ocean acidification and heatwaves caused by rising CO2 affect bivalves and other coastal organisms. Intertidal bivalves are vital to benthic ecosystems, but their physiological and metabolic responses to compound catastrophic climate events are unknown. Here, we examined Manila clam (Ruditapes philippinarum) responses to low pH and heatwaves. Biochemical and gene expression demonstrated that pH and heatwaves greatly affect physiological energy enzymes and genes expression. In the presence of heatwaves, Manila clams expressed more enzymes and genes involved in physiological energetics regardless of acidity, even more so than in the presence of both. In this study, calcifying organisms' biochemical and molecular reactions are more susceptible to temperature rises than acidity. Acclimation under harsh weather conditions was consistent with thermal stress increase at lower biological organization levels. These substantial temporal biochemical and molecular patterns illuminate clam tipping points. This study helps us understand how compound extreme weather and climate events affect coastal bivalves for future conservation efforts.


Subject(s)
Bivalvia , Seawater , Animals , Bivalvia/physiology , Seawater/chemistry , Hydrogen-Ion Concentration , Climate Change , Oceans and Seas , Ecosystem , Extreme Weather
4.
Mar Pollut Bull ; 200: 116112, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320442

ABSTRACT

Rapidly increasing concentration of carbon dioxide (CO2) in the atmosphere not only results in global warming, but also drives increasing seawater acidification. Infaunal bivalves play critical roles in benthic-pelagic coupling, but little is known about their behavioral responses to compound climate events. Here, we tested how heatwaves and acidification affected the behavior of Manila clams (Ruditapes philippinarum). Under acidified conditions, the clams remained capable of burrowing into sediments. Yet, when heatwaves attacked, significant decreases in burrowing ability occurred. Following two consecutive events of heatwaves, the clams exhibited rapid behavioral acclimation. The present study showed that the behavior of R. philippinarum is more sensitive to heatwaves than acidification. Given that the behavior can act as an early and sensitive indicator of the fitness of intertidal bivalves, whether, and to what extent, behavioral acclimation can persist under scenarios of intensifying heatwaves in the context of ocean acidification deserve further investigations.


Subject(s)
Bivalvia , Extreme Weather , Animals , Seawater , Hydrogen-Ion Concentration , Bivalvia/physiology , Climate
5.
Mar Pollut Bull ; 186: 114395, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36455501

ABSTRACT

Marine heatwaves (MHWs) have increased in intensity and frequency in global oceans, causing deleterious effects on many marine organisms and ecosystems they support. Bivalves are among the most vulnerable taxonomic groups to intensifying MHWs, yet little is known about the underlying mechanisms. Here, we investigated the impact of MHWs on the digestive metabolism of pearl oysters (Pinctada maxima). Two moderate and severe scenarios of MHWs were performed by increasing seawater temperature respectively from 24 °C to 28 °C and 32 °C for 3 days. When subjected to MHWs and with increasing intensity, pearl oysters significantly enhanced their digestive enzymatic activities, such as lipase and amylase. LC-MS-based metabolomics revealed negative responses in the lipid metabolism (e.g., steroid biosynthesis, glycerophospholipid metabolism, and sphingolipid metabolism), the amino acid metabolism (e.g., glutamate, histidine, arginine, and proline), and the B-vitamins metabolism. These findings indicate that the digestive metabolism of marine bivalves can likely succumb to intensifying MHWs events.


Subject(s)
Pinctada , Animals , Pinctada/metabolism , Ecosystem , Oceans and Seas , Seawater , Aquatic Organisms
6.
Sci Total Environ ; 854: 158726, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36108834

ABSTRACT

Marine heatwaves are predicted to become more intense and frequent in the future, possibly threatening the survival of marine organisms and devastating their communities. While recent evidence reveals the adaptability of marine organisms to heatwaves, substantially overlooked is whether they can also adjust to repeated heatwave exposure, which can occur in nature. By analysing transcriptome, we examined the fitness and recoverability of the pearl oyster (Pinctada maxima) after two consecutive heatwaves (24 °C to 32 °C for 3 days; recovery at 24 °C for 4 days). In the first heatwave, 331 differentially expressed genes (DEGs) were found, such as AGE-RAGE, MAPK, JAK-STAT, FoxO and mTOR. Despite the recovery after the first heatwave, 2511 DEGs related to energy metabolism, body defence, cell proliferation and biomineralization were found, where 1655 of them were downregulated, suggesting a strong negative response to the second heatwave. Our findings imply that some marine organisms can indeed tolerate heatwaves by boosting energy metabolism to support molecular defence, cell proliferation and biomineralization, but this capacity can be overwhelmed by repeated exposure to heatwaves. Since recurrence of heatwaves within a short period of time is predicted to be more prevalent in the future, the functioning of marine ecosystems would be disrupted if marine organisms fail to accommodate repeated extreme thermal stress.


Subject(s)
Pinctada , Transcriptome , Animals , Ecosystem , Gene Expression Profiling , Aquatic Organisms
7.
Mar Pollut Bull ; 184: 114223, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36240632

ABSTRACT

Heatwaves are becoming hotter, longer and more frequent, threatening the survival of intertidal bivalves and devastating their ecosystems. Yet, substantially overlooked are heatwave-induced post-responses, which are important to assess cascading consequences. Here, we investigated responses of intertidal bivalves, Ruditapes philippinarum, to recurrent heatwaves. Physiological and gene expression analyses demonstrated that the mantle tissue of R. philippinarum did not sensitively respond to heatwaves, but revealed post-responses under recovery scenarios. Of 20 genes related to essential physiology and fitness, 18 were down-regulated during the 1st recovery period, but following repeated exposure, 13 genes were up-regulated, in line with significantly increased activities of energy-metabolizing enzymes, and antioxidant and nonspecific enzymes. The down-regulation of genes involved in biomineralization, nevertheless, was observed under recovery scenarios, implying the trade-off between essential physiological and fitness-related functions. These findings pave the way for understanding the physiological plasticity of marine bivalves in response to intensifying heatwaves.


Subject(s)
Bivalvia , Ecosystem , Animals , Antioxidants , Hot Temperature
8.
Sci Total Environ ; 841: 156744, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35716751

ABSTRACT

Heatwaves have become more frequent and intense in the last two decades, resulting in detrimental effects on marine bivalves and ecosystems they sustain. Intertidal clams inhabit the most physiologically challenging habitats in coastal areas and live already near their thermal tolerance limits. However, whether and to what extent atmospheric heatwaves affect intertidal bivalves remain poorly understood. Here, we investigated physiological responses of the Manila clam, Ruditapes philippinarum, to heatwaves at air temperature regimes of 40 °C and 50 °C occurring frequently and occasionally at the present day in the Beibu Gulf, South China Sea. With the increasing intensity of heatwaves and following only two days of aerial exposure, Manila clams suffered 100 % mortality at 50 °C, indicating that they succumb to near future heatwaves, although they survived under various scenarios of moderate heatwaves. The latter is couched in energetic terms across levels of biological organization. Specifically, Manila clams acutely exposed to heatwaves enhanced their standard metabolic rate to fuel essential physiological maintenance, such as increasing activities of SOD, CAT, MDA, and AKP, and expression of HSP70. These strategies occur likely at the expense of fitness-related functions, as best exemplified by significant depressions in activities of enzymes (NKA, CMA, and T-ATP) and expression levels of genes (PT, KHK, CA, CAS, TYR, TNF-BP, and OSER). When heatwaves occurred again, Manila clams can respond and acclimate to thermal stress by implementing a suite of more ATP-efficient and less energy-costly compensatory mechanisms at various levels of biological organization. It is consequently becoming imperative to uncover underlying mechanisms responsible for such positive response and rapid acclimation to recurrent heatwaves.


Subject(s)
Bivalvia , Ecosystem , Acclimatization , Adenosine Triphosphate , Animals , Bivalvia/physiology , Seafood
9.
Sci Total Environ ; 838(Pt 1): 155933, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35577097

ABSTRACT

This review aims to explore the effects of microplastics and their corresponding additives on the physiological performances of marine bivalves together with their related genes. We identified gaps based on studies that were conducted on other organisms, and we conducted a comparative study on similar and relevant aspects for exploring future potential areas of study and interest. Microplastics are widely dispersed in all forms of media (solid, liquid, and gas). Exposure to an organism (including humans) is inevitable. However, impacts depend on the concentration of exposure, location of a biomarker being observed, and treatment involved. Different shapes, colors, and polymer types are reported and the transfer of microplastics along the food chain are recorded. The impacts of microplastics intensify when coupled with other chemicals or additives (referred to as xenobiotics) in a treated group. Thus, the degree of inhibition or enhancement of a physiological response magnifies when a coexposure of microplastic and a xenobiotic occurs. Microplastics have been observed to reduce immune system functionality by reducing hemocytes count, distorting oxidative system, respiration, and increasing energy consumption in bivalves due to physiological modulations that result from ingestion of microplastics or their additives. We found knowledge gaps and suggested future research directions to fully understand the impact of microplastics and their additives on marine bivalves.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Environmental Monitoring , Humans , Microplastics , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...