Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 13: 4, 2019.
Article in English | MEDLINE | ID: mdl-30800056

ABSTRACT

Neurotrophins (NTs) are secretory proteins that bind to target receptors and influence many cellular functions, such as cell survival and cell death in neurons. The mammalian NT brain-derived neurotrophic factor (matBDNF) is the C-terminal mature form released by cleavage from the proBDNF precursor. The binding of matBDNF to the tyrosine kinase receptor B (TrkB) activates different signaling cascades and leads to neuron survival and plasticity, while the interaction of proBDNF with the p75 NT receptor (p75NTR)/sortilin receptor complex has been highly involved in apoptosis. Many studies have demonstrated that prolonged seizures such as status epilepticus (SE) induce changes in the expression of NT, pro-NT, and their receptors. We have previously described that the blockage of both matBDNF and proBDNF signaling reduces neuronal death after SE in vivo (Unsain et al., 2008). We used an in vitro model as well as an in vivo model of SE to determine the specific role of TrkB and proBDNF signaling during neuronal cell death. We found that the matBDNF sequestering molecule TrkB-Fc induced an increase in neuronal death in both models of SE, and it also prevented a decrease in TrkB levels. Moreover, SE triggered the interaction between proBDNF and p75NTR, which was not altered by sequestering matBDNF. The intra-hippocampal administration of TrkB-Fc, combined with an antibody against proBDNF, prevented neuronal degeneration. In addition, we demonstrated that proBDNF binding to p75NTR exacerbates neuronal death when matBDNF signaling is impaired through TrkB. Our results indicated that both the mature and the precursor forms of BDNF may have opposite effects depending on the scenario in which they function and the signaling pathways they activate.

2.
Mol Cell Neurosci ; 88: 240-248, 2018 04.
Article in English | MEDLINE | ID: mdl-29444457

ABSTRACT

Astrocytes are a heterogeneous population of glial cells that react to brain insults through a process referred to as astrogliosis. Reactive astrocytes are characterized by an increase in proliferation, size, migration to the injured zone and release of a plethora of chemical mediators such as NGF and BDNF. The aim of this study was to determine whether there are brain region-associated responses of astrocytes to an injury and to the neurotrophins NGF and BDNF. We used the scratch injury model to study the closure of a wound inflicted on a monolayer of astrocytes obtained from cortex, hippocampus or striatum. Our results indicate that the response of astrocytes to a mechanical lesion differ according to brain regions. Astrocytes from the striatum proliferate and repopulate the injury site more rapidly than astrocytes from cortex or hippocampus. We found that the scratch injury induced the upregulation of neurotrophin receptor p75NTR and TrkB.t in astrocytes from all brain regions studied. When astrocytes from all regions were treated with NGF, the neurotrophin induced migration of the astrocytes (assessed in Boyden chambers) and induced wound closure but did not affect proliferation. In contrast, BDNF induced wound closure but only in astrocytes from striatum. Our overall findings show the heterogeneity in astrocyte functions based on their brain region of origin, and how this functional diversity may determine their responses to an injury and to neurotrophins.


Subject(s)
Astrocytes/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain/metabolism , Nerve Growth Factors/metabolism , Animals , Cells, Cultured , Cerebral Cortex/injuries , Cerebral Cortex/metabolism , Gliosis/metabolism , Hippocampus/injuries , Hippocampus/metabolism , Neuroglia/metabolism , Rats, Wistar
3.
Hippocampus ; 22(2): 347-58, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21136521

ABSTRACT

There is a great deal of evidence showing the capacity of physical exercise to enhance cognitive function, reduce anxiety and depression, and protect the brain against neurodegenerative disorders. Although the effects of exercise are well documented in the mature brain, the influence of exercise in the developing brain has been poorly explored. Therefore, we investigated the morphological and functional hippocampal changes in adult rats submitted to daily treadmill exercise during the adolescent period. Male Wistar rats aged 21 postnatal days old (P21) were divided into two groups: exercise and control. Animals in the exercise group were submitted to daily exercise on the treadmill between P21 and P60. Running time and speed gradually increased over this period, reaching a maximum of 18 m/min for 60 min. After the aerobic exercise program (P60), histological and behavioral (water maze) analyses were performed. The results show that early-life exercise increased mossy fibers density and hippocampal expression of brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B, improved spatial learning and memory, and enhanced capacity to evoke spatial memories in later stages (when measured at P96). It is important to point out that while physical exercise induces hippocampal plasticity, degenerative effects could appear in undue conditions of physical or psychological stress. In this regard, we also showed that the exercise protocol used here did not induce inflammatory response and degenerating neurons in the hippocampal formation of developing rats. Our findings demonstrate that physical exercise during postnatal development results in positive changes for the hippocampal formation, both in structure and function.


Subject(s)
Hippocampus/cytology , Hippocampus/physiology , Memory/physiology , Neuronal Plasticity/physiology , Physical Conditioning, Animal/physiology , Animals , Blotting, Western , Cell Count , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Immunohistochemistry , Male , Maze Learning/physiology , Mossy Fibers, Hippocampal/physiology , Rats , Rats, Wistar , Spatial Behavior/physiology
4.
J Neurochem ; 111(2): 428-40, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19686240

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is involved in many aspects of neuronal biology and hippocampal physiology. Status epilepticus (SE) is a condition in which prolonged seizures lead to neuronal degeneration. SE-induced in rodents serves as a model of Temporal Lobe Epilepsy with hippocampal sclerosis, the most frequent epilepsy in humans. We have recently described a strong correlation between TrkB decrease and p75ntr increase with neuronal degeneration (Neuroscience 154:978, 2008). In this report, we report that local, acute intra-hippocampal infusion of function-blocking antibodies against BDNF prevented both early TrkB down-regulation and neuronal degeneration after SE. Conversely, the infusion of recombinant human BDNF protein after SE greatly increased neuronal degeneration. The inhibition of BDNF mRNA translation by the infusion of antisense oligonucleotides induced a rapid decrease of BDNF protein levels, and a delayed increase. If seizures were induced at the time endogenous BDNF was decreased, SE-induced neuronal damage was prevented. On the other hand, if seizures were induced at the time endogenous BDNF was increased, SE-induced neuronal damage was exacerbated. These results indicate that under a pathological condition BDNF exacerbates neuronal injury.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Neurons/metabolism , Neurons/pathology , Receptor, trkB/metabolism , Status Epilepticus/metabolism , Status Epilepticus/pathology , Animals , Antibodies/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/immunology , Cell Death/physiology , Disease Models, Animal , Down-Regulation/physiology , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Muscarinic Agonists/toxicity , Oligoribonucleotides, Antisense/pharmacology , Pilocarpine/toxicity , Protein Precursors/immunology , Protein Precursors/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Status Epilepticus/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...