Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 8: 1774, 2017.
Article in English | MEDLINE | ID: mdl-29075283

ABSTRACT

The impact of climate change has been identified as an emerging issue for food security and safety, and the increased incidence of mycotoxin contamination in maize over the last two decades is considered a potential emerging hazard. Disease control by chemical and agronomic approaches is often ineffective and increases the cost of production; for this reason the exploitation of genetic resistance is the most sustainable method for reducing contamination. The review focuses on the significant advances that have been made in the development of transcriptomic, genetic and genomic information for maize, Fusarium verticillioides molds, and their interactions, over recent years. Findings from transcriptomic studies have been used to outline a specific model for the intracellular signaling cascade occurring in maize cells against F. verticillioides infection. Several recognition receptors, such as receptor-like kinases and R genes, are involved in pathogen perception, and trigger down-stream signaling networks mediated by mitogen-associated protein kinases. These signals could be orchestrated primarily by hormones, including salicylic acid, auxin, abscisic acid, ethylene, and jasmonic acid, in association with calcium signaling, targeting multiple transcription factors that in turn promote the down-stream activation of defensive response genes, such as those related to detoxification processes, phenylpropanoid, and oxylipin metabolic pathways. At the genetic and genomic levels, several quantitative trait loci (QTL) and single-nucleotide polymorphism markers for resistance to Fusarium ear rot deriving from QTL mapping and genome-wide association studies are described, indicating the complexity of this polygenic trait. All these findings will contribute to identifying candidate genes for resistance and to applying genomic technologies for selecting resistant maize genotypes and speeding up a strategy of breeding to contrast disease, through plants resistant to mycotoxin-producing pathogens.

2.
Anal Chem ; 89(17): 9518-9526, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28787149

ABSTRACT

Stable isotope labeling (SIL) techniques have the potential to enhance different aspects of liquid chromatography-high-resolution mass spectrometry (LC-HRMS)-based untargeted metabolomics methods including metabolite detection, annotation of unknown metabolites, and comparative quantification. In this work, we present MetExtract II, a software toolbox for detection of biologically derived compounds. It exploits SIL-specific isotope patterns and elution profiles in LC-HRMS(/MS) data. The toolbox consists of three complementary modules: M1 (AllExtract) uses mixtures of uniformly highly isotope-enriched and native biological samples for selective detection of the entire accessible metabolome. M2 (TracExtract) is particularly suited to probe the metabolism of endogenous or exogenous secondary metabolites and facilitates the untargeted screening of tracer derivatives from concurrently metabolized native and uniformly labeled tracer substances. With M3 (FragExtract), tandem mass spectrometry (MS/MS) fragments of corresponding native and uniformly labeled ions are evaluated and automatically assigned with putative sum formulas. Generated results can be graphically illustrated and exported as a comprehensive data matrix that contains all detected pairs of native and labeled metabolite ions that can be used for database queries, metabolome-wide internal standardization, and statistical analysis. The software, associated documentation, and sample data sets are freely available for noncommercial use at http://metabolomics-ifa.boku.ac.at/metextractII .


Subject(s)
Isotope Labeling , Metabolomics/methods , Software , Molecular Structure
3.
BMC Plant Biol ; 17(1): 20, 2017 01 21.
Article in English | MEDLINE | ID: mdl-28109190

ABSTRACT

BACKGROUND: Fusarium verticillioides is a common maize pathogen causing ear rot (FER) and contamination of the grains with the fumonisin B1 (FB1) mycotoxin. Resistance to FER and FB1 contamination are quantitative traits, affected by environmental conditions, and completely resistant maize genotypes to the pathogen are so far unknown. In order to uncover genomic regions associated to reduced FER and FB1 contamination and identify molecular markers for assisted selection, an F2:3 population of 188 progenies was developed crossing CO441 (resistant) and CO354 (susceptible) genotypes. FER severity and FB1 contamination content were evaluated over 2 years and sowing dates (early and late) in ears artificially inoculated with F. verticillioides by the use of either side-needle or toothpick inoculation techniques. RESULTS: Weather conditions significantly changed in the two phenotyping seasons and FER and FB1 content distribution significantly differed in the F3 progenies according to the year and the sowing time. Significant positive correlations (P < 0.01) were detected between FER and FB1 contamination, ranging from 0.72 to 0.81. A low positive correlation was determined between FB1 contamination and silking time (DTS). A genetic map was generated for the cross, based on 41 microsatellite markers and 342 single nucleotide polymorphisms (SNPs) derived from Genotyping-by-Sequencing (GBS). QTL analyses revealed 15 QTLs for FER, 17 QTLs for FB1 contamination and nine QTLs for DTS. Eight QTLs located on linkage group (LG) 1, 2, 3, 6, 7 and 9 were in common between FER and FB1, making possible the selection of genotypes with both low disease severity and low fumonisin contamination. Moreover, five QTLs on LGs 1, 2, 4, 5 and 9 located close to previously reported QTLs for resistance to other mycotoxigenic fungi. Finally, 24 candidate genes for resistance to F. verticillioides are proposed combining previous transcriptomic data with QTL mapping. CONCLUSIONS: This study identified a set of QTLs and candidate genes that could accelerate breeding for resistance of maize lines showing reduced disease severity and low mycotoxin contamination determined by F. verticillioides.


Subject(s)
Fumonisins/metabolism , Fusarium/physiology , Quantitative Trait Loci , Zea mays/genetics , Zea mays/microbiology , Genotype , Microsatellite Repeats/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Polymorphism, Single Nucleotide/genetics , Zea mays/metabolism
4.
J Plant Physiol ; 200: 53-61, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27340858

ABSTRACT

Fusarium verticillioides is a fungal pathogen of maize that causes ear rot and contaminates the grains with fumonisin mycotoxins. Breeding for resistance to Fusarium emerged as the most economic and environmentally safe strategy; therefore the discovery of resistant sources and effective molecular markers are a priority. Ears of resistant (CO441 and CO433) and susceptible (CO354 and CO389) maize lines were inoculated with F. verticillioides and the expression of pathogenesis-related (PR) genes (PR1, PR5, PRm3, PRm6) and genes that protect from oxidative stress (peroxidase, catalase, superoxide dismutase and ascorbate peroxidase) were evaluated in the kernels at 72h post inoculation. In addition, the oxidation level and the enzymatic activity of ascorbate-glutathione cycle, catalase, superoxide dismutase and cytosolic and wall peroxidases were investigated. The uninoculated kernels of the resistant lines showed higher gene expression and enzymatic activities, highlighting the key role of constitutive resistance in limiting pathogen attack. In contrast, the susceptible lines activated defensive genes only after pathogen inoculation, resulting in increased levels of H2O2 and lipid peroxidation, as well as lower enzymatic activities. The constitutive defenses observed in this study from seed could be profitably exploited to develop markers to speed up conventional breeding programs in the selection of resistant genotypes.


Subject(s)
Antioxidants/metabolism , Disease Resistance , Fusarium/physiology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/metabolism , Zea mays/enzymology , Zea mays/microbiology , Disease Resistance/genetics , Fusarium/growth & development , Gene Dosage , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genotype , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Oxidative Stress/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zea mays/genetics , Zea mays/immunology
5.
J Plant Physiol ; 188: 9-18, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26398628

ABSTRACT

Fusarium verticillioides causes ear rot in maize and contaminates the kernels with the fumonisin mycotoxins. It is known that plant lipoxygenase (LOX)-derived oxylipins regulate defence against pathogens and that the host-pathogen lipid cross-talk influences the pathogenesis. The expression profiles of fifteen genes of the LOX pathway were studied in kernels of resistant and susceptible maize lines, grown in field condition, at 3, 7 and 14 days post inoculation (dpi) with F. verticillioides. Plant defence responses were correlated with the pathogen growth, the expression profiles of fungal FUM genes for fumonisin biosynthesis and fumonisin content in the kernels. The resistant genotype limited fungal growth and fumonisin accumulation between 7 and 14 dpi. Pathogen growth became exponential in the susceptible line after 7 dpi, in correspondence with massive transcription of FUM genes and fumonisins augmented exponentially at 14 dpi. LOX pathway genes resulted strongly induced after pathogen inoculation in the resistant line at 3 and 7 dpi, whilst in the susceptible line the induction was reduced or delayed at 14 dpi. In addition, all genes resulted overexpressed before infection in kernels of the resistant genotype already at 3 dpi. The results suggest that resistance in maize may depend on an earlier activation of LOX genes and genes for jasmonic acid biosynthesis.


Subject(s)
Fumonisins/metabolism , Fusarium/physiology , Gene Expression Regulation, Plant , Lipoxygenase/genetics , Mycotoxins/metabolism , Plant Proteins/genetics , Zea mays/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Lipoxygenase/metabolism , Plant Breeding , Plant Proteins/metabolism , Zea mays/genetics , Zea mays/metabolism
6.
Mol Plant Microbe Interact ; 28(5): 546-57, 2015 May.
Article in English | MEDLINE | ID: mdl-26024441

ABSTRACT

Developing kernels of resistant and susceptible maize genotypes were inoculated with Fusarium proliferatum, F. subglutinans, and Aspergillus flavus. Selected defense systems were investigated using real-time reverse transcription-polymerase chain reaction to monitor the expression of pathogenesis-related (PR) genes (PR1, PR5, PRm3, PRm6) and genes protective from oxidative stress (peroxidase, catalase, superoxide dismutase and ascorbate peroxidase) at 72 h postinoculation. The study was also extended to the analysis of the ascorbate-glutathione cycle and catalase, superoxide dismutase, and cytosolic and wall peroxidases enzymes. Furthermore, the hydrogen peroxide and malondialdehyde contents were studied to evaluate the oxidation level. Higher gene expression and enzymatic activities were observed in uninoculated kernels of resistant line, conferring a major readiness to the pathogen attack. Moreover expression values of PR genes remained higher in the resistant line after inoculation, demonstrating a potentiated response to the pathogen invasions. In contrast, reactive oxygen species-scavenging genes were strongly induced in the susceptible line only after pathogen inoculation, although their enzymatic activity was higher in the resistant line. Our data provide an important basis for further investigation of defense gene functions in developing kernels in order to improve resistance to fungal pathogens. Maize genotypes with overexpressed resistance traits could be profitably utilized in breeding programs focused on resistance to pathogens and grain safety.


Subject(s)
Aspergillus flavus/physiology , Fusarium/physiology , Gene Expression Regulation, Plant , Plant Diseases/immunology , Plant Immunity , Zea mays/immunology , Ascorbate Peroxidases/metabolism , Catalase/metabolism , Genotype , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Mycotoxins/metabolism , Peroxidases/metabolism , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/enzymology , Seeds/genetics , Seeds/immunology , Seeds/microbiology , Superoxide Dismutase , Zea mays/enzymology , Zea mays/genetics , Zea mays/microbiology
7.
BMC Genomics ; 15: 710, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25155950

ABSTRACT

BACKGROUND: Fusarium verticillioides causes ear rot in maize (Zea mays L.) and accumulation of mycotoxins, that affect human and animal health. Currently, chemical and agronomic measures to control Fusarium ear rot are not very effective and selection of more resistant genotypes is a desirable strategy to reduce contaminations. A deeper knowledge of molecular events and genetic basis underlying Fusarium ear rot is necessary to speed up progress in breeding for resistance. RESULTS: A next-generation RNA-sequencing approach was used for the first time to study transcriptional changes associated with F. verticillioides inoculation in resistant CO441 and susceptible CO354 maize genotypes at 72 hours post inoculation. More than 100 million sequence reads were generated for inoculated and uninoculated control plants and analyzed to measure gene expression levels. Comparison of expression levels between inoculated vs. uninoculated and resistant vs. susceptible transcriptomes revealed a total number of 6,951 differentially expressed genes. Differences in basal gene expression were observed in the uninoculated samples. CO441 genotype showed a higher level of expression of genes distributed over all functional classes, in particular those related to secondary metabolism category. After F. verticillioides inoculation, a similar response was observed in both genotypes, although the magnitude of induction was much greater in the resistant genotype. This response included higher activation of genes involved in pathogen perception, signaling and defense, including WRKY transcription factors and jasmonate/ethylene mediated defense responses. Interestingly, strong differences in expression between the two genotypes were observed in secondary metabolism category: pathways related to shikimate, lignin, flavonoid and terpenoid biosynthesis were strongly represented and induced in the CO441 genotype, indicating that selection to enhance these traits is an additional strategy for improving resistance against F. verticillioides infection. CONCLUSIONS: The work demonstrates that the global transcriptional analysis provided an exhaustive view of genes involved in pathogen recognition and signaling, and controlling activities of different TFs, phytohormones and secondary metabolites, that contribute to host resistance against F. verticillioides. This work provides an important source of markers for development of disease resistance maize genotypes and may have relevance to study other pathosystems involving mycotoxin-producing fungi.


Subject(s)
Disease Resistance/genetics , Fusarium/physiology , Plant Diseases/immunology , Zea mays/genetics , Gene Expression Regulation, Plant , Genome, Plant , Genotype , Host-Pathogen Interactions , Immunity, Innate/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Plant/genetics , Sequence Analysis, RNA , Transcriptional Activation , Transcriptome , Zea mays/immunology , Zea mays/microbiology
8.
Metabolomics ; 10(4): 754-769, 2014.
Article in English | MEDLINE | ID: mdl-25057268

ABSTRACT

Many untargeted LC-ESI-HRMS based metabolomics studies are still hampered by the large proportion of non-biological sample derived signals included in the generated raw data. Here, a novel, powerful stable isotope labelling (SIL)-based metabolomics workflow is presented, which facilitates global metabolome extraction, improved metabolite annotation and metabolome wide internal standardisation (IS). The general concept is exemplified with two different cultivation variants, (1) co-cultivation of the plant pathogenic fungi Fusarium graminearum on non-labelled and highly 13C enriched culture medium and (2) experimental cultivation under native conditions and use of globally U-13C labelled biological reference samples as exemplified with maize and wheat. Subsequent to LC-HRMS analysis of mixtures of labelled and non-labelled samples, two-dimensional data filtering of SIL specific isotopic patterns is performed to better extract truly biological derived signals together with the corresponding number of carbon atoms of each metabolite ion. Finally, feature pairs are convoluted to feature groups each representing a single metabolite. Moreover, the correction of unequal matrix effects in different sample types and the improvement of relative metabolite quantification with metabolome wide IS are demonstrated for the F. graminearum experiment. Data processing employing the presented workflow revealed about 300 SIL derived feature pairs corresponding to 87-135 metabolites in F. graminearum samples and around 800 feature pairs corresponding to roughly 350 metabolites in wheat samples. SIL assisted IS, by the use of globally U-13C labelled biological samples, reduced the median CV value from 7.1 to 3.6 % for technical replicates and from 15.1 to 10.8 % for biological replicates in the respective F. graminearum samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...