Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 46(19): 4912-4915, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34598232

ABSTRACT

This Letter describes a super-oscillatory lens (SOL), with concentric ring-type metallic slits photolithographically fabricated on a glass substrate, that can function at subterahertz frequencies. The SOL has been investigated both experimentally and theoretically and demonstrates a spatial resolution of 1.5 mm (0.5λ), which is 0.45 times the diffraction limit, with a focal length of 75 mm (25λ) at 100 GHz (λ=3mm). Furthermore, the depth of focus of the lens was measured to be 47 mm, which is 10.8 times larger than that of a conventional lens. This type of SOL, with subdiffraction focusing, is thus highly effective for use in industrial inspections with millimeter and terahertz waves.

2.
Rev Sci Instrum ; 85(2): 023507, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593361

ABSTRACT

This study presents a simple and powerful technique for multichannel measurements of the density profile in laboratory plasmas by microwave interferometry. This technique uses electromechanical microwave switches to temporally switch the connection between multiple receiver antennas and one phase-detection circuit. Using this method, the phase information detected at different positions is rearranged into a time series that can be acquired from a minimum number of data acquisition channels (e.g., two channels in the case of quadrature detection). Our successfully developed multichannel microwave interferometer that uses the antenna switching method was applied to measure the radial electron density profiles in a magnetized plasma experiment. The advantage of the proposed method is its compactness and scalability to multidimensional measurement systems at low cost.

3.
Rev Sci Instrum ; 83(10): 10E347, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23127004

ABSTRACT

We propose a new interferometer concept that can realize electron-density distribution measurement with high spatial and moderate temporal resolution. The image non-radiative dielectric guide antenna can probe a wide measurement area simultaneously. We fabricated the antenna with an electromagnetic simulator and confirmed that the simulated and measured radiation patterns are consistent with each other. In addition, we found that the antenna shows the required characteristics such as scanning characteristics, which depend on the input frequency.

4.
Rev Sci Instrum ; 81(9): 094301, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20886996

ABSTRACT

In this paper, we present two robust signal processing techniques for stress evaluation using a microwave reflectometric cardiopulmonary sensing instrument. These techniques enable the heart rate variability (HRV) to be recovered from measurements of body-surface dynamic motion, which is subsequently used for the stress evaluation. Specifically, two novel elements are introduced: one is a reconfiguration of the HRV from the cross-correlation function between a measurement signal and a template signal which is constructed by averaging periodic component over a measurement time. The other is a reconstruction of the HRV from the time variation of the heartbeat frequency; this is evaluated by a repetition of the maximum entropy method. These two signal processing techniques accomplish the reconstruction of the HRV, though they are completely different algorithms. For validations of our model, an experimental setup is presented and several sets of experimental data are analyzed using the two proposed signal processing techniques, which are subsequently used for the stress evaluation. The results presented herein are consistent with electrocardiogram data.


Subject(s)
Heart Rate , Microwaves , Radar/instrumentation , Stress, Physiological , Electrocardiography , Fourier Analysis , Humans , Time Factors
5.
Rev Sci Instrum ; 79(10): 10F112, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044596

ABSTRACT

Reflectometry has been expected to be one of the key diagnostics to measure density profiles. We have applied an ultrashort-pulse reflectometry (USPR) system to Large Helical Device in the National Institute for Fusion Science. Wide frequency band system is required to obtain wide density profile since an incident wave is reflected at the density layer corresponding to its cutoff frequency. The reflectometry utilizes an impulse with less than 30 ps pulse width as a source. Since the bandwidth of an impulse has an inverse relation to the pulse width, we can cover the frequency range of micro- to millimeter waves (18-40 GHz) with a single source. The density profiles can be reconstructed by collecting time-of-flight (TOF) signals for each frequency component of an impulse reflected from the corresponding cutoff layer. We utilize the signal record analysis (SRA) method to reconstruct the density profiles from the TOF signal. The effectiveness of the SRA method for the profile reconstruction is confirmed by a simulation study of the USPR using a finite-difference time domain method.

6.
Rev Sci Instrum ; 79(10): 10F115, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044599

ABSTRACT

Plasma experiments on KSTAR are scheduled to start up this year (2008). We have developed an electron cyclotron emission (ECE) radiometer to measure the radial electron temperature profiles in KSTAR experiments. The radiometer system consists, briefly, of two downconversion stages, amplifiers, bandpass filter banks, and video detectors. These components are made commercially or developed in house. The system detects ECE power in the frequency range from 110 to 196 GHz, the detected signal being resolved by means of 48 frequency windows. Before installation of this system on KSTAR, we installed a part of this system on large helical device (LHD) to study the system under similar plasma conditions. In this experiment, the signal amplitude, considered to be proportional to the electron temperature, is measured. The time-dependent traces of the electron temperature measured by this radiometer are in good agreement with those provided by the LHD Michelson spectrometer. The system noise level which limits the minimum measurable temperature (converted to the electron temperature) is about 30 eV.

SELECTION OF CITATIONS
SEARCH DETAIL
...