Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacogenomics ; 24(4): 207-217, 2023 03.
Article in English | MEDLINE | ID: mdl-36927114

ABSTRACT

Purpose: The aim of this study was to analyze the effects of various genetic polymorphisms and clinical factors on tacrolimus (TAC) concentration in the convalescence period (CP) and stabilization period (SP) post-liver transplantation. Patients & methods: A total of 13 SNPs were genotyped in 97 Chinese liver transplant recipients. Associations between SNPs and TAC trough blood concentration/dose ratio (C0/D) were analyzed using different genetic models in both CP and SP. Results: Only five SNPs were significantly associated with TAC log (C0/D) in the CP, and none showed a significant association in the SP. We identified rs15524 (CYP3A5), rs9200 (C6), albumin and creatinine as independent predictors of TAC C0/D in the CP. Furthermore, a final model in the CP explained a total of 30.5% TAC variation. Conclusion: Our study results suggest that in the early stages post-transplantation surgery, recipients' genetic and clinical factors exert a short-term impact on TAC metabolism that gradually decreases with time.


Subject(s)
Immunosuppressive Agents , Liver Transplantation , Tacrolimus , Humans , Cytochrome P-450 CYP3A/genetics , East Asian People , Genotype , Immunosuppressive Agents/pharmacokinetics , Immunosuppressive Agents/therapeutic use , Polymorphism, Single Nucleotide , Tacrolimus/pharmacokinetics , Tacrolimus/therapeutic use , Transplant Recipients
2.
Clin Transl Sci ; 15(11): 2640-2651, 2022 11.
Article in English | MEDLINE | ID: mdl-35977080

ABSTRACT

Tacrolimus (TAC) is an immunosuppressant widely used in kidney transplantation. TAC displays considerable interindividual variability in pharmacokinetics (PKs). Genetic and clinical factors play important roles in TAC PKs. We enrolled a total of 251 Chinese renal transplant recipients and conducted a genomewide association study (GWAS), linkage disequilibrium (LD), and one-way analysis of variance (ANOVA) to find genetic variants affecting log-transformed TAC trough blood concentration/dose ratio (log[C0 /D]). In addition, we performed dual luciferase reporter gene assays and multivariate regression models to evaluate the effect of the genetic variants. The GWAS results showed that all 23 genomewide significant single-nucleotide polymorphisms (p < 5 × 10-8 ) were located on chromosome 7, including CYP3A5*3. LD, conditional association analysis, and one-way ANOVA showed that rs75125371 T > C independently influenced TAC log(C0 /D). Dual luciferase reporter gene assays indicated that rs75125371 minor allele (C) was significantly associated with increased normalized luciferase activity than the major allele (T) in the Huh7 cells (p = 1.2 × 10-5 ) and HepaRG cells (p = 0.0097). A model inclusive of age, sex, hematocrit, CYP3A5*3, and rs75125371 explained 37.34% variance in TAC C0 . These results suggest that rs75125371 T > C is a functional and population-specific variant affecting TAC C0 in Chinese renal transplant recipients.


Subject(s)
Kidney Transplantation , Tacrolimus , Humans , Tacrolimus/pharmacokinetics , Cytochrome P-450 CYP3A/genetics , Kidney Transplantation/adverse effects , Genome-Wide Association Study , Polymorphism, Single Nucleotide , China , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...