Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 5(3): 103155, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38935509

ABSTRACT

Humanized mice, defined as mice with human immune systems, have become an emerging model to study human hematopoiesis, infectious disease, and cancer. Here, we describe the techniques to generate humanized NSGF6 mice using adult human CD34+ hematopoietic stem and progenitor cells (HSPCs). We describe steps for constructing and monitoring the engraftment of humanized mice. We then detail procedures for tissue processing and immunophenotyping by flow cytometry to evaluate the multilineage hematopoietic differentiation. For complete details on the use and execution of this protocol, please refer to Yu et al.1.

2.
iScience ; 27(3): 109238, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38433905

ABSTRACT

Pre-clinical use of humanized mice transplanted with CD34+ hematopoietic stem and progenitor cells (HSPCs) is limited by insufficient engraftment with adult non-mobilized HSPCs. Here, we developed a novel immunodeficient mice based on NOD-SCID-Il2γc-/- (NSG) mice to support long-term engraftment with human adult HSPCs. As both Flt3L and IL-6 are critical for many aspects of hematopoiesis, we knock-out mouse Flt3 and knock-in human IL6 gene. The resulting mice showed an increase in the availability of mouse Flt3L to human cells and a dose-dependent production of human IL-6 upon activation. Upon transplantation with low number of human HSPCs from adult bone marrow, these humanized mice demonstrated a significantly higher engraftment with multilineage differentiation of human lymphoid and myeloid cells, and tissue colonization at one year after adult HSPC transplant. Thus, these mice enable studies of human hematopoiesis and tissue colonization over time and may facilitate building autologous models for immuno-oncology studies.

3.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873457

ABSTRACT

Pre-clinical use of humanized mice transplanted with CD34 + hematopoietic progenitor cells (HPCs) is limited by insufficient engraftment with adult HPCs. Here, we developed a novel immunodeficient mice based in NOD-SCID- Il2γc -/- (NSG) mice to support long-term engraftment with human adult HPCs and tissue colonization with human myeloid cells. As both Flt3L and IL-6 are critical for many aspects of hematopoiesis, we knock-out mouse Flt3 and knock-in human IL6 gene. The resulting mice showed an increase in the availability of mouse Flt3L to human cells, and a dose-dependent production of human IL-6 upon activation. Upon transplantation with low number of human HPCs from adult bone marrow, these humanized mice demonstrated a significantly higher engraftment with multilineage differentiation of human lymphoid and myeloid cells. Furthermore, higher frequencies of human lymphoid and myeloid cells were detected in tissues at one year after adult HPC transplant. Thus, these mice enable studies of human hematopoiesis and tissue colonization over time. Summary: Pre-clinical use of humanized mice is limited by insufficient engraftment with adult hematopoietic progenitor cells (HPCs). Here, we developed a novel immunodeficient mice which support long-term engraftment with adult bone marrow HPCs and facilitate building autologous models for immuno-oncology studies.

4.
J Exp Med ; 218(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-33857287

ABSTRACT

Metastasis of melanoma significantly worsens prognosis; thus, therapeutic interventions that prevent metastasis could improve patient outcomes. Here, we show using humanized mice that colonization of distant visceral organs with melanoma is dependent upon a human CD33+CD11b+CD117+ progenitor cell subset comprising <4% of the human CD45+ leukocytes. Metastatic tumor-infiltrating CD33+ cells from patients and humanized (h)NSG-SGM3 mice showed converging transcriptional profiles. Single-cell RNA-seq analysis identified a gene signature of a KIT/CD117-expressing CD33+ subset that correlated with decreased overall survival in a TCGA melanoma cohort. Thus, human CD33+CD11b+CD117+ myeloid cells represent a novel candidate biomarker as well as a therapeutic target for metastatic melanoma.


Subject(s)
Melanoma/metabolism , Melanoma/pathology , Myeloid Cells/metabolism , Myeloid Cells/pathology , Proto-Oncogene Proteins c-kit/metabolism , Animals , Biomarkers/metabolism , CD11b Antigen/metabolism , Cell Line, Tumor , Cohort Studies , Humans , Leukocyte Common Antigens/metabolism , Leukocytes/metabolism , Leukocytes/pathology , Mice , Mice, Inbred NOD , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...