Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(28): e2403198, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38655776

ABSTRACT

The nonlinear elasticity of many tissue-specific extracellular matrices is difficult to recapitulate without the use of fibrous architectures, which couple strain-stiffening with stress relaxation. Herein, bottlebrush polymers are synthesized and crosslinked to form poly(ethylene glycol)-based hydrogels and used to study how strain-stiffening behavior affects human mesenchymal stromal cells (hMSCs). By tailoring the bottlebrush polymer length, the critical stress associated with the onset of network stiffening is systematically varied, and a unique protrusion-rich hMSC morphology emerges only at critical stresses within a biologically accessible stress regime. Local cell-matrix interactions are quantified using 3D traction force microscopy and small molecule inhibitors are used to identify cellular machinery that plays a critical role in hMSC mechanosensing of the engineered, strain-stiffening microenvironment. Collectively, this study demonstrates how covalently crosslinked bottlebrush polymer hydrogels can recapitulate strain-stiffening biomechanical cues at biologically relevant stresses and be used to probe how nonlinear elastic matrix properties regulate cellular processes.


Subject(s)
Actomyosin , Elasticity , Hydrogels , Mesenchymal Stem Cells , Polyethylene Glycols , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Actomyosin/metabolism , Polyethylene Glycols/chemistry , Polymers/chemistry , Polymers/pharmacology , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...