Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1197: 339523, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35168721

ABSTRACT

Polymeric microspheres which can load biomolecules, cells and active agents play an important role in tissue engineering and drug delivery systems. The conventional double emulsion method has been frequently used to fabricate polymeric microspheres. However, this method has two major shortcomings: the complicated fabrication process which makes it difficult to predict the characteristics of the final microspheres while the size distribution of the microspheres has a wide range. In this study, we eliminate the shortcomings of the conventional double emulsion method and increase its performance without decreasing its high production rate. This can make the proposed modified method a promising approach suitable for mass production of microspheres. To this end, the effect of different fabrication parameters on the size and surface morphology of the microspheres have been investigated. This information provides researchers with helpful insights to fabricate the desired microspheres with specific size distribution and surface morphology. Moreover, by incorporating the conventional double emulsion method with a high throughput inertial microfluidics device, microspheres with a narrow size distribution have been obtained.


Subject(s)
Drug Delivery Systems , Emulsions , Microspheres , Particle Size , Reproducibility of Results
2.
IEEE Trans Nanobioscience ; 20(4): 426-435, 2021 10.
Article in English | MEDLINE | ID: mdl-34152989

ABSTRACT

Bacterial populations are promising candidates for the development of the receiver and transmitter nanomachines for molecular communication (MC). A bacterial receiver is required to uptake the information molecules and produce the detectable molecules following a regulation mechanism. We have constructed a novel bacterial MC receiver using an inducible bacterial L-rhamnose-regulating operon. The proposed bacterial receiver produces green fluorescent protein (GFP) in response to the L-rhamnose information molecules following a quite fast regulation mechanism. To fabricate the receiver, the bacterial population has been transformed using a plasmid harboring L-rhamnose operon genes and gene expressing GFP in a microfluidic environment. We mathematically model the reception process of information molecules and characterize the model parameters by comparing the simulation results of the model in the employed microfluidic environment and the data obtained from the experimental setup. Based on the experimental results, the receiver is able to switch between different low and high concentrations. This work paves the way for the fabrication and modeling of any bacterial operon-based receiver with any proteins rather than GFP. Further, our experimental results indicate that the proposed bacterial receiver has a faster response to information molecules compared to the previous bacterial receiver based on the quorum sensing (QS) process.


Subject(s)
Microfluidics , Rhamnose , Bacterial Proteins/genetics , Operon/genetics , Quorum Sensing/genetics
3.
Lab Chip ; 20(6): 1023-1048, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32067001

ABSTRACT

Since the discovery of inertial focusing in 1961, numerous theories have been put forward to explain the migration of particles in inertial flows, but a complete understanding is still lacking. Recently, computational approaches have been utilized to obtain better insights into the underlying physics. In particular, fundamental aspects of particle focusing inside straight and curved microchannels have been explored in detail to determine the dependence of focusing behavior on particle size, channel shape, and flow Reynolds number. In this review, we differentiate between the models developed for inertial particle motion on the basis of whether they are semi-analytical, Navier-Stokes-based, or built on the lattice Boltzmann method. This review provides a blueprint for the consideration of numerical solutions for modeling of inertial particle motion, whether deformable or rigid, spherical or non-spherical, and whether suspended in Newtonian or non-Newtonian fluids. In each section, we provide the general equations used to solve particle motion, followed by a tutorial appendix and specified sections to engage the reader with details of the numerical studies. Finally, we address the challenges ahead in the modeling of inertial particle microfluidics for future investigators.

4.
Anal Chim Acta ; 1083: 137-149, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31493804

ABSTRACT

Inertial microfluidics is utilized as a powerful passive method for particle and cell manipulation, which uses the hydrodynamic forces of the fluid in the channel to focus particles in specific equilibrium positions in the cross section of the channel. To achieve high performance manipulation, knowledge of focusing pattern of particles in the cross section of channel is essential. In this paper, we propose a method to address this important issue. To this end, firstly inertial microfluidics is analyzed in rectangular cross section channels. The results indicate that fluid flow velocity and channel's cross-sectional profiles have great impacts on the forces exerted on particles. Next, these results are utilized to propose a method to predict equilibrium positions in non-rectangular cross section channels through some simple calculations. This method is based on approximating the velocity profile of a non-rectangular cross section channel by utilizing portions of velocity profiles of different rectangular cross section channels. To analyze the method's performance, results obtained from the proposed method are compared with Direct Numerical Simulation (DNS) and experimental studies of seven non-rectangular channels. It is observed that the proposed approach accurately predicts particles trajectories and their equilibrium positions in the cross section of channels.

5.
Biomicrofluidics ; 13(3): 034103, 2019 May.
Article in English | MEDLINE | ID: mdl-31123535

ABSTRACT

Elasto-inertial microfluidics has drawn significant attention in recent years due to its enhanced capabilities compared to pure inertial systems in control of small microparticles. Previous investigations have focused mainly on the applications of elasto-inertial sorting, rather than studying its fundamentals. This is because of the complexity of simulation and analysis, due to the presence of viscoelastic force. There have been some investigative efforts on the mechanisms of elasto-inertial focusing in straight channels; however, these studies were limited to simple rectangular channels and neglected the effects of geometry and flow rates on focusing positions. Herein, for the first time, we experimentally and numerically explore the effects of elasticity accompanying channel cross-sectional geometry and sample flow rates on the focusing phenomenon in elasto-inertial systems. The results reveal that increasing the aspect ratio weakens the elastic force more than inertial force, causing a transition from one focusing position to two. In addition, they show that increasing the angle of a channel corner causes the elastic force to push the particles more efficiently toward the center over a larger area of the channel cross section. Following on from this, we proposed a new complex straight channel which demonstrates a tighter focusing band compared to other channel geometries. Finally, we focused Saccharomyces cerevisiae cells (3-5 µm) in the complex channel to showcase its capability in focusing small-size particles. We believe that this research work improves the understanding of focusing mechanisms in viscoelastic solutions and provides useful insights into the design of elasto-inertial microfluidic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...