Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 88(2): 355-366, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37522438

ABSTRACT

The SARS-CoV-2 pandemic has resulted in the infection and death of many South Africans. This is in part due to a lack of testing facilities, equipment, and staff in many areas, particularly those with low population densities. The study focused on the infection dynamics of the virus in the Northern Cape province in all five municipalities investigating wastewater-based surveillance for the province. Reverse transcription was used to identify the virus, and SARS-CoV-2 RNA was detected in a batch of wastewater from four of the five areas sampled and was collected in the months that fall within the third wave of COVID as well as the winter season (May-July). The detection of the SARS-CoV-2 RNA correlated with infection statistics as well as the seasonality of the virus. This research showed a positive result in using wastewater epidemiology to track the spread of the virus but also highlighted the need for improved methodology when it comes to this surveillance. This includes sampling smaller areas and frequent sampling in multiple areas to show clear patterns within smaller, sparsely populated communities.


Subject(s)
COVID-19 , RNA, Viral , Humans , South Africa , RNA, Viral/genetics , SARS-CoV-2/genetics , Wastewater , COVID-19/epidemiology
2.
Environ Res ; 231(Pt 1): 116073, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37164282

ABSTRACT

The presence of heavy metal ions and emerging pollutants in water poses a great risk to various biological ecosystems as a result of their high toxicity. Consequently, devising efficient and environmentally friendly methods to decontaminate these waters is of high interest to many researchers around the world. Among the varied water treatment and desalination means, adsorption and photocatalysis have been widely employed. However, the discussion and analysis of the use of zeolite-based composites as adsorbents are somehow minimal. The porous aluminosilicates (zeolites) are excellent candidates in wastewater treatment owing to various mechanisms of pollutants removal that they possess. The purpose of this review is thus to provide a synopsis of the current developments in the fabrication and application of nanocomposites based on zeolite as adsorbents and photocatalysts for the extraction of heavy metals, dyes and emerging pollutants from wastewaters. The review goes on to look into the effect of weight ratio on photocatalyst, photodegradation pathways, and various factors that influence photocatalysis and adsorption.


Subject(s)
Environmental Pollutants , Metals, Heavy , Nanocomposites , Water Pollutants, Chemical , Water Purification , Zeolites , Ecosystem , Wastewater , Indicators and Reagents , Water Purification/methods , Adsorption
3.
Chemosphere ; 329: 138580, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37019401

ABSTRACT

This review provides an overview of recent progress in the development of layered covalent organic frameworks (LCOFs) for the adsorption and degradation of pollutants in water and wastewater treatment. LCOFs have unique properties such as high surface area, porosity, and tunability, which make them attractive adsorbents and catalysts for water and wastewater treatment. The review covers the different synthesis methods for LCOFs, including self-assembly, co-crystallization, template-directed synthesis, covalent organic polymerization (COP), and solvothermal synthesis. It also covers the structural and chemical characteristics of LCOFs, their adsorption and degradation capacity for different pollutants, and their comparison with other adsorbents and catalysts. Additionally, it discussed the mechanism of adsorption and degradation by LCOFs, the potential applications of LCOFs in water and wastewater treatment, case studies and pilot-scale experiments, challenges, and limitations of using LCOFs, and future research directions. The current state of research on LCOFs for water and wastewater treatment is promising, however, more research is needed to improve their performance and practicality. The review highlights that LCOFs have the potential to significantly improve the efficiency and effectiveness of current water and wastewater treatment methods and can also have implications for policy and practice.


Subject(s)
Environmental Pollutants , Metal-Organic Frameworks , Water Pollutants, Chemical , Water Purification , Water , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption
4.
Antibiotics (Basel) ; 11(11)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36358116

ABSTRACT

Antibiotics, as pollutants of emerging concern, can enter marine environments, rivers, and lakes and endanger ecology and human health. The purpose of this study was to review the studies conducted on the presence of antibiotics in water, sediments, and organisms in aquatic environments (i.e., seas, rivers, and lakes). Most of the reviewed studies were conducted in 2018 (15%) and 2014 (11%). Antibiotics were reported in aqueous media at a concentration of <1 ng/L−100 µg/L. The results showed that the highest number of works were conducted in the Asian continent (seas: 74%, rivers: 78%, lakes: 87%, living organisms: 100%). The highest concentration of antibiotics in water and sea sediments, with a frequency of 49%, was related to fluoroquinolones. According to the results, the highest amounts of antibiotics in water and sediment were reported as 460 ng/L and 406 ng/g, respectively. In rivers, sulfonamides had the highest abundance (30%). Fluoroquinolones (with an abundance of 34%) had the highest concentration in lakes. Moreover, the highest concentration of fluoroquinolones in living organisms was reported at 68,000 ng/g, with a frequency of 39%. According to the obtained results, it can be concluded that sulfonamides and fluoroquinolones are among the most dangerous antibiotics due to their high concentrations in the environment. This review provides timely information regarding the presence of antibiotics in different aquatic environments, which can be helpful for estimating ecological risks, contamination levels, and their management.

5.
Chemosphere ; 305: 135392, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35753416

ABSTRACT

It is essential to develop a simple, applicable, and reliable assay to anticancer drug raloxifene (RAF) because of its significant usage and side effect due to entering residue in the environment. Fluorescence sensors developed and widely used because of them high selectivity, fast-response, and highly-sensitivity. The gold nanoparticles using chitosan hydrogel was synthesized and applied as a fluorescence sensor to determine the trace amount of RAF. The characterization methods including DLS, FE-SEM, EDX, XRD, and FT-IR were performed to confirm the synthesized structure. This sensor turned off the fluorescent signals proportional to RAF concentrations at 400 nm. The RAF can be detected in the linear range from 5 × 10-7 to 5 × 10-5 M. Limits of detection and quantification were obtained as 34 × 10-8 and 11 × 10-7 M as well as the relative standard deviation calculated as 1.63% in RAF measuring. The effective parameters on quenching efficiency were studied by central composite design (CCD) with response surface methodology (RSM). The effective parameters in RAF determination, include analyte concentration, temperature, contact time, and pH, were obtained as 35 µM, 30 °C, 8 min, and pH = 8.5. The sensor was applied to determine the RAF concentrations in biological and environmental samples with satisfactory recoveries between 97.5% and 109%.


Subject(s)
Chitosan , Metal Nanoparticles , Gold/chemistry , Hydrogels , Metal Nanoparticles/chemistry , Raloxifene Hydrochloride , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...