Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36234596

ABSTRACT

Aliovalent-doped metal oxide nanocrystals exhibiting localized surface plasmons (LSPRs) are applied in systems that require reflection/scattering/absorption in infrared and optical transparency in visible. Indium tin oxide (ITO) is currently leading the field, but indium resources are known to be very restricted. Antimony-doped tin oxide (ATO) is a cheap candidate to substitute the ITO, but it exhibits less advantageous electronic properties and limited control of the LSPRs. To date, LSPR tuning in ATO NCs has been achieved electrochemically and by aliovalent doping, with a significant decrease in doping efficiency with an increasing doping level. Here, we synthesize plasmonic ATO nanocrystals (NCs) via a solvothermal route and demonstrate ligand exchange to tune the LSPR energies. Attachment of ligands acting as Lewis acids and bases results in LSPR peak shifts with a doping efficiency overcoming those by aliovalent doping. Thus, this strategy is of potential interest for plasmon implementations, which are of potential interest for infrared upconversion, smart glazing, heat absorbers, or thermal barriers.

2.
Nat Commun ; 8(1): 91, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28733618

ABSTRACT

Successful formation of electronic interfaces between living cells and semiconductors hinges on being able to obtain an extremely close and high surface-area contact, which preserves both cell viability and semiconductor performance. To accomplish this, we introduce organic semiconductor assemblies consisting of a hierarchical arrangement of nanocrystals. These are synthesised via a colloidal chemical route that transforms the nontoxic commercial pigment quinacridone into various biomimetic three-dimensional arrangements of nanocrystals. Through a tuning of parameters such as precursor concentration, ligands and additives, we obtain complex size and shape control at room temperature. We elaborate hedgehog-shaped crystals comprising nanoscale needles or daggers that form intimate interfaces with the cell membrane, minimising the cleft with single cells without apparent detriment to viability. Excitation of such interfaces with light leads to effective cellular photostimulation. We find reversible light-induced conductance changes in ion-selective or temperature-gated channels.Nanomaterials that form a bioelectronic interface with cells are fascinating tools for controlling cellular behavior. Here, the authors photostimulate single cells with spiky assemblies of semiconducting quinacridone nanocrystals, whose nanoscale needles maximize electronic contact with the cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...