Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 7(12)2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30572633

ABSTRACT

The transcoelomic metastasis pathway is an alternative to traditional lymphatic/hematogenic metastasis. It is most frequently observed in ovarian cancer, though it has been documented in colon and gastric cancers as well. In transcoelomic metastasis, primary tumor cells are released into the abdominal cavity and form cell aggregates known as spheroids. These spheroids travel through the peritoneal fluid and implant at secondary sites, leading to the formation of new tumor lesions in the peritoneal lining and the organs in the cavity. Models of this process that incorporate the fluid shear stress (FSS) experienced by these spheroids are few, and most have not been fully characterized. Proposed herein is the adaption of a known dynamic cell culture system, the orbital shaker, to create an environment with physiologically-relevant FSS for spheroid formation. Experimental conditions (rotation speed, well size and cell density) were optimized to achieve physiologically-relevant FSS while facilitating the formation of spheroids that are also of a physiologically-relevant size. The FSS improves the roundness and size consistency of spheroids versus equivalent static methods and are even comparable to established high-throughput arrays, while maintaining nearly equivalent viability. This effect was seen in both highly metastatic and modestly metastatic cell lines. The spheroids generated using this technique were fully amenable to functional assays and will allow for better characterization of FSS's effects on metastatic behavior and serve as a drug screening platform. This model can also be built upon in the future by adding more aspects of the peritoneal microenvironment, further enhancing its in vivo relevance.

2.
Adv Exp Med Biol ; 898: 251-64, 2016.
Article in English | MEDLINE | ID: mdl-27161232

ABSTRACT

Transient receptor potential canonical subfamily, member 7 (TRPC7) is the most recently identified member of the TRPC family of Ca(2+)-permeable non-selective cation channels. The gene encoding the TRPC7 channel plasma membrane protein was first cloned from mouse brain. TRPC7 mRNA and protein have been detected in cell types derived from multiple organ systems from various species including humans. Gq-coupled protein receptor activation is the predominant mode of TRPC7 activation. Lipid metabolites involved in the phospholipase C (PLC) signaling pathway, including diacylglycerol (DAG) and its precursor the phosphatidylinositol-4,5-bisphosphate (PIP2), have been shown to be direct regulators of TRPC7 channel. TRPC7 channels have been linked to the regulation of various cellular functions however, the depth of our understanding of TRPC7 channel function and regulation is limited in comparison to other TRP channel family members. This review takes a historical look at our current knowledge of TRPC7 mechanisms of activation and its role in cellular physiology and pathophysiology.


Subject(s)
Calcium/metabolism , TRPC Cation Channels/physiology , Animals , Calcium Signaling , Ion Transport , Mice , Protein Conformation , TRPC Cation Channels/chemistry , TRPC Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...