Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 212: 109060, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35461880

ABSTRACT

Phosphodiesterase 9 (PDE9) degrades selectively the second messenger cGMP, which is an important molecule of dopamine signaling pathways in striatal projection neurons (SPNs). In this study, we assessed the effects of a selective PDE9 inhibitor (PDE9i) in the primate model of Parkinson's disease (PD). Six macaques with advanced parkinsonism were used in the study. PDE9i was administered as monotherapy and co-administration with l-DOPA at two predetermined doses (suboptimal and threshold s.c. doses of l-Dopa methyl ester plus benserazide) using a controlled blinded protocol to assess motor disability, l-DOPA -induced dyskinesias (LID), and other neurologic drug effects. While PDE9i was ineffective as monotherapy, 2.5 and 5 mg/kg (s.c.) of PDE9i significantly potentiated the antiparkinsonian effects of l-DOPA with a clear prolongation of the "on" state (p < 0.01) induced by either the suboptimal or threshold l-DOPA dose. Co-administration of PDE9i had no interaction with l-DOPA pharmacokinetics. PDE9i did not affect the intensity of LID. These results indicate that cGMP upregulation interacts with dopamine signaling to enhance the l-DOPA reversal of parkinsonian motor disability. Therefore, striatal PDE9 inhibition may be further explored as a strategy to improve motor responses to l-DOPA in PD.


Subject(s)
Disabled Persons , Dyskinesia, Drug-Induced , Motor Disorders , Parkinson Disease , Animals , Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use , Disease Models, Animal , Dopamine , Dyskinesia, Drug-Induced/drug therapy , Humans , Levodopa/therapeutic use , Motor Disorders/drug therapy , Parkinson Disease/drug therapy , Phosphoric Diester Hydrolases , Primates
2.
Curr Opin Pharmacol ; 38: 72-80, 2018 02.
Article in English | MEDLINE | ID: mdl-29605730

ABSTRACT

Metabotropic glutamate receptors (mGluRs) are heavily expressed throughout the basal ganglia (BG), where they modulate neuronal excitability, transmitter release and long term synaptic plasticity. Therefore, targeting specific mGluR subtypes by means of selective drugs could be a possible strategy for restoring normal synaptic function and neuronal activity of the BG in Parkinson disease (PD). Preclinical studies have revealed that specific mGluR subtypes mediate significant neuroprotective effects that reduce toxin-induced midbrain dopaminergic neuronal death in animal models of PD. Although the underlying mechanisms of these effects must be further studied, there is evidence that intracellular calcium regulation, anti-inflammatory effects, and glutamatergic network modulation contribute to some of these neuroprotective properties. It is noteworthy that these protective effects extend beyond midbrain dopaminergic neurons to include other monoaminergic cell groups for some mGluRs. In this review, we discuss evidence for mGluR-mediated neuroprotection in PD and highlight the challenges to translate these findings into human trials.


Subject(s)
Neuroprotection , Parkinson Disease/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , Basal Ganglia/metabolism , Humans , Parkinson Disease/drug therapy
3.
J Neural Transm (Vienna) ; 125(3): 337-363, 2018 03.
Article in English | MEDLINE | ID: mdl-28861737

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder clinically characterized by cardinal motor deficits including bradykinesia, tremor, rigidity and postural instability. Over the past decades, it has become clear that PD symptoms extend far beyond motor signs to include cognitive, autonomic and psychiatric impairments, most likely resulting from cortical and subcortical lesions of non-dopaminergic systems. In addition to nigrostriatal dopaminergic degeneration, pathological examination of PD brains, indeed, reveals widespread distribution of intracytoplasmic inclusions (Lewy bodies) and death of non-dopaminergic neurons in the brainstem and thalamus. For that past three decades, the MPTP-treated monkey has been recognized as the gold standard PD model because it displays some of the key behavioral and pathophysiological changes seen in PD patients. However, a common criticism raised by some authors about this model, and other neurotoxin-based models of PD, is the lack of neuronal loss beyond the nigrostriatal dopaminergic system. In this review, we argue that this assumption is largely incorrect and solely based on data from monkeys intoxicated with acute administration of MPTP. Work achieved in our laboratory and others strongly suggest that long-term chronic administration of MPTP leads to brain pathology beyond the dopaminergic system that displays close similarities to that seen in PD patients. This review critically examines these data and suggests that the chronically MPTP-treated nonhuman primate model may be suitable to study the pathophysiology and therapeutics of some non-motor features of PD.


Subject(s)
Corpus Striatum/pathology , Dopaminergic Neurons/pathology , Nerve Degeneration/pathology , Parkinsonian Disorders/pathology , Substantia Nigra/pathology , Animals , Haplorhini
4.
Neuropharmacology ; 110(Pt A): 449-457, 2016 11.
Article in English | MEDLINE | ID: mdl-27539962

ABSTRACT

Schizophrenia symptoms are associated with alterations in basal ganglia-cortical networks that include the cyclic nucleotides (cAMP/cGMP) signaling pathways. Phosphodiesterase 10A (PDE10A) inhibitors have been considered as therapeutic agents for schizophrenia because the regulation of cAMP and cGMP in the striatum by PDE10A plays an important role in the signaling mechanisms of the striatal-cortical network, and thereby in cognitive function. In the present study we assessed in non-human primates (NHPs) the effects of a novel PDE10A inhibitor (FRM-6308) that has demonstrated high potency and selectivity for human recombinant PDE10A in vitro. The behavioral effects of FRM-6308 in a dose range were determined in rhesus monkeys using a standardized motor disability scale for primates, motor tasks, and the "drug effects on the nervous system" (DENS) scale. The neuronal metabolic effects of FRM-6308 were determined with [(18)F]-fluorodeoxyglucose PET imaging. Results showed that FRM-6308 did not have any specific effects on the motor system at s.c. doses up to 0.32 mg/kg in NHPs, which induced a significant increase in the FDG-SUV in striatum (F 16.069, p < 0.05) and cortical (F 15.181, p < 0.05) regions. Higher doses induced sedation and occasional involuntary movements with clear development of tolerance after repeated exposures. These findings suggest that FRM-6308 has the adequate pharmacological profile to advance testing in clinical trials and demonstrate antipsychotic efficacy of PDE10A inhibition for the treatment of schizophrenia patients.


Subject(s)
Antipsychotic Agents/pharmacology , Brain/drug effects , Phosphodiesterase Inhibitors/pharmacology , Schizophrenia/drug therapy , Animals , Antipsychotic Agents/adverse effects , Antipsychotic Agents/blood , Brain/diagnostic imaging , Brain/enzymology , Dose-Response Relationship, Drug , Dyskinesia, Drug-Induced , Female , Fluorodeoxyglucose F18 , Macaca mulatta , Male , Motor Skills/drug effects , Phosphodiesterase Inhibitors/adverse effects , Phosphodiesterase Inhibitors/blood , Phosphoric Diester Hydrolases/metabolism , Positron-Emission Tomography , Radiopharmaceuticals , Schizophrenia/enzymology
5.
Neuropharmacology ; 77: 257-67, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24490227

ABSTRACT

Phosphodiesterase 10A (PDE10A) is highly expressed in striatal medium spiny neurons of both the direct and indirect output pathways. Similar to dopamine D2 receptor antagonists acting on indirect pathway neurons, PDE10A inhibitors have shown behavioral effects in rodent models that predict antipsychotic efficacy. These findings have supported the clinical investigation of PDE10A inhibitors as a new treatment for schizophrenia. However, PDE10A inhibitors and D2 antagonists differ in effects on direct pathway and other neurons of the basal ganglia, indicating that these two drug classes may have divergent antipsychotic efficacy and side effect profile. In the present study, we compare the behavioral effects of the selective PDE10A inhibitor MP-10 to those of the clinical standard D2 antagonist risperidone in rhesus monkeys using a standardized motor disability scale for parkinsonian primates and a newly designed "Drug Effects on Nervous System" scale to assess non-motor effects. Behavioral effects of MP-10 correlated with its plasma levels and its regulation of metabolic activity in striatal and cortical regions as measured by FDG-PET imaging. While MP-10 and risperidone broadly impacted similar behavioral domains in the primate, their effects had a different underlying basis. MP-10-treated animals retained the ability to respond but did not engage tasks, whereas risperidone-treated animals retained the motivation to respond but were unable to perform the intended actions. These findings are discussed in light of what is currently known about the modulation of striatal circuitry by these two classes of compounds, and provide insight into interpreting emerging clinical data with PDE10A inhibitors for the treatment of psychotic symptoms.


Subject(s)
Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Motor Activity/drug effects , Phosphodiesterase Inhibitors/pharmacology , Pyrazoles/pharmacology , Quinolines/pharmacology , Risperidone/pharmacology , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Female , Frontal Lobe/drug effects , Frontal Lobe/metabolism , Macaca mulatta , Male , Phosphodiesterase Inhibitors/blood , Pyrazoles/blood , Quinolines/blood , Schizophrenia/drug therapy
6.
J Neurophysiol ; 107(5): 1500-12, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22131382

ABSTRACT

According to traditional models of the basal ganglia-thalamocortical network of connections, dopamine exerts D2-like receptor (D2LR)-mediated effects through actions on striatal neurons that give rise to the "indirect" pathway, secondarily affecting the activity in the internal and external pallidal segments (GPi and GPe, respectively) and the substantia nigra pars reticulata (SNr). However, accumulating evidence from the rodent literature suggests that D2LR activation also directly influences synaptic transmission in these nuclei. To further examine this issue in primates, we combined in vivo electrophysiological recordings and local intracerebral microinjections of drugs with electron microscopic immunocytochemistry to study D2LR-mediated modulation of neuronal activities in GPe, GPi, and SNr of normal and MPTP-treated (parkinsonian) monkeys. D2LR activation with quinpirole increased firing in most GPe neurons, likely due to a reduction of striatopallidal GABAergic inputs. In contrast, local application of quinpirole reduced firing in GPi and SNr, possibly through D2LR-mediated effects on glutamatergic inputs. Injections of the D2LR antagonist sulpiride resulted in effects opposite to those of quinpirole in GPe and GPi. D2 receptor immunoreactivity was most prevalent in putative striatal-like GABAergic terminals and unmyelinated axons in GPe, GPi, and SNr, but a significant proportion of immunoreactive boutons also displayed ultrastructural features of glutamatergic terminals. Postsynaptic labeling was minimal in all nuclei. The D2LR-mediated effects and pattern of distribution of D2 receptor immunoreactivity were maintained in the parkinsonian state. Thus, in addition to their preferential effects on indirect pathway striatal neurons, extrastriatal D2LR activation in GPi and SNr also influences direct pathway elements in the primate basal ganglia under normal and parkinsonian conditions.


Subject(s)
Basal Ganglia/physiology , Corpus Striatum/physiology , Parkinsonian Disorders/metabolism , Receptors, Dopamine D2/physiology , Animals , Basal Ganglia/drug effects , Corpus Striatum/drug effects , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Dopamine D2 Receptor Antagonists , Macaca mulatta , Neural Pathways/drug effects , Neural Pathways/physiology , Parkinsonian Disorders/physiopathology , Receptors, Dopamine D2/agonists
7.
Brain ; 134(Pt 7): 2057-73, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21705423

ABSTRACT

Degeneration of the dopaminergic nigrostriatal system and of noradrenergic neurons in the locus coeruleus are important pathological features of Parkinson's disease. There is an urgent need to develop therapies that slow down the progression of neurodegeneration in Parkinson's disease. In the present study, we tested whether the highly specific metabotropic glutamate receptor 5 antagonist, 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine, reduces dopaminergic and noradrenergic neuronal loss in monkeys rendered parkinsonian by chronic treatment with low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Weekly intramuscular 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injections (0.2-0.5 mg/kg body weight), in combination with daily administration of 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine or vehicle, were performed until the development of parkinsonian motor symptoms in either of the two experimental groups (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine versus 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle). After 21 weeks of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment, all 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle-treated animals displayed parkinsonian symptoms, whereas none of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine-treated monkeys were significantly affected. These behavioural observations were consistent with in vivo positron emission tomography dopamine transporter imaging data, and with post-mortem stereological counts of midbrain dopaminergic neurons, as well as striatal intensity measurements of dopamine transporter and tyrosine hydroxylase immunoreactivity, which were all significantly higher in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine-treated animals than in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle-treated monkeys. The 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine treatment also had a significant effect on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced loss of norepinephrine neurons in the locus coeruleus and adjoining A5 and A7 noradrenaline cell groups. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/vehicle-treated animals, almost 40% loss of tyrosine hydroxylase-positive norepinephrine neurons was found in locus coeruleus/A5/A7 noradrenaline cell groups, whereas the extent of neuronal loss was lower than 15% of control values in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine-treated monkeys. Our data demonstrate that chronic treatment with the metabotropic glutamate receptor 5 antagonist, 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl] pyridine, significantly reduces 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity towards dopaminergic and noradrenergic cell groups in non-human primates. This suggests that the use of metabotropic glutamate receptor 5 antagonists may be a useful strategy to reduce degeneration of catecholaminergic neurons in Parkinson's disease.


Subject(s)
Brain/pathology , Dopamine/metabolism , Excitatory Amino Acid Antagonists/therapeutic use , MPTP Poisoning/complications , Nerve Degeneration , Neurons/drug effects , Norepinephrine/metabolism , Receptors, Metabotropic Glutamate/antagonists & inhibitors , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Analysis of Variance , Animals , Brain/diagnostic imaging , Brain Mapping , Calbindins , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Interactions , Female , Fluorine Radioisotopes , MPTP Poisoning/diagnostic imaging , Macaca mulatta , Nerve Degeneration/etiology , Nerve Degeneration/pathology , Nerve Degeneration/prevention & control , Nortropanes/pharmacokinetics , Positron-Emission Tomography , Protein Binding/drug effects , Pyridines/pharmacology , Receptor, Metabotropic Glutamate 5 , S100 Calcium Binding Protein G/metabolism , Thiazoles/pharmacology , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...