Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 32(9): 1804-1822, 2022 04 20.
Article in English | MEDLINE | ID: mdl-34519330

ABSTRACT

Decreased cortical serotonergic and catecholaminergic innervation of the frontal cortex has been reported at early stages of Parkinson's disease (PD). However, the limited availability of animal models that exhibit these pathological features has hampered our understanding of the functional significance of these changes during the course of the disease. In the present study, we assessed longitudinal changes in cortical serotonin and catecholamine innervation in motor-symptomatic and asymptomatic monkeys chronically treated with low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Densitometry and unbiased stereological techniques were used to quantify changes in serotonin and tyrosine hydroxylase (TH) immunoreactivity in frontal cortices of 3 control monkeys and 3 groups of MPTP-treated monkeys (motor-asymptomatic [N = 2], mild parkinsonian [N = 3], and moderate parkinsonian [N = 3]). Our findings revealed a significant decrease (P < 0.001) in serotonin innervation of motor (Areas 4 and 6), dorsolateral prefrontal (Areas 9 and 46), and limbic (Areas 24 and 25) cortical areas in motor-asymptomatic MPTP-treated monkeys. Both groups of symptomatic MPTP-treated animals displayed further serotonin denervation in these cortical regions (P < 0.0001). A significant loss of serotonin-positive dorsal raphe neurons was found in the moderate parkinsonian group. On the other hand, the intensity of cortical TH immunostaining was not significantly affected in motor asymptomatic MPTP-treated monkeys, but underwent a significant reduction in the moderate symptomatic group (P < 0.05). Our results indicate that chronic intoxication with MPTP induces early pathology in the corticopetal serotonergic system, which may contribute to early non-motor symptoms in PD.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Denervation , Macaca mulatta , Serotonin , Tyrosine 3-Monooxygenase
2.
Brain Struct Funct ; 224(8): 2787-2804, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31422483

ABSTRACT

Preclinical evidence indicates that mGluR5 is a potential therapeutic target for Parkinson's disease and L-DOPA-induced dyskinesia. However, the mechanisms through which these therapeutic benefits are mediated remain poorly understood. Although the regulatory role of mGluR5 on glutamatergic transmission has been examined in various basal ganglia nuclei, very little is known about the localization and function of mGluR5 in the ventral motor and intralaminar thalamic nuclei, the main targets of basal ganglia output in mammals. Thus, we used immuno-electron microscopy to map the cellular and subcellular localization of group I mGluRs (mGluR1a and mGluR5) in the ventral motor and caudal intralaminar thalamic nuclei in rhesus monkeys. Furthermore, using double immuno-electron microscopy, we examined the subsynaptic localization of mGluR5 in relation to cortical and sub-cortical glutamatergic afferents. Four major conclusions can be drawn from these data. First, mGluR1a and mGluR5 are expressed postsynaptically on the plasma membrane of dendrites of projection neurons and GABAergic interneurons in the basal ganglia- and cerebellar-receiving regions of the ventral motor thalamus and in CM. Second, the plasma membrane-bound mGluR5 immunoreactivity is preferentially expressed perisynaptically at the edges of cortical and sub-cortical glutamatergic afferents. Third, the mGluR5 immunoreactivity is more strongly expressed in the lateral than the medial tiers of CM, suggesting a preferential association with thalamocortical over thalamostriatal neurons in the primate CM. Overall, mGluR5 is located to subserve powerful modulatory role of cortical and subcortical glutamatergic transmission in the primate ventral motor thalamus and CM.


Subject(s)
Cerebral Cortex/ultrastructure , Neurons/ultrastructure , Presynaptic Terminals/ultrastructure , Receptor, Metabotropic Glutamate 5/analysis , Receptors, Metabotropic Glutamate/analysis , Thalamus/ultrastructure , Afferent Pathways/ultrastructure , Animals , Dendrites/ultrastructure , Female , Intralaminar Thalamic Nuclei/ultrastructure , Macaca mulatta , Male
3.
Neurobiol Dis ; 100: 9-18, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28042095

ABSTRACT

There is anatomical and functional evidence that ventral midbrain dopaminergic (DA) cell groups and the subthalamic nucleus (STN) receive noradrenergic innervation in rodents, but much less is known about these interactions in primates. Degeneration of NE neurons in the locus coeruleus (LC) and related brainstem NE cell groups is a well-established pathological feature of Parkinson's disease (PD), but the development of such pathology in animal models of PD has been inconsistent across species and laboratories. We recently demonstrated 30-40% neuronal loss in the LC, A5 and A6 NE cell groups of rhesus monkeys rendered parkinsonian by chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study, we used dopamine-beta-hydroxylase (DßH) immunocytochemistry to assess the impact of this neuronal loss on the number of NE terminal-like varicosities in the substantia nigra pars compacta (SNC), ventral tegmental area (VTA), retrorubral field (RRF) and STN of MPTP-treated parkinsonian monkeys. Our findings reveal that the NE innervation of the ventral midbrain and STN of normal monkeys is heterogeneously distributed being far more extensive in the VTA, RRF and dorsal tier of the SNC than in the ventral SNC and STN. In parkinsonian monkeys, all regions underwent a significant (~50-70%) decrease in NE innervation. At the electron microscopic level, some DßH-positive terminals formed asymmetric axo-dendritic synapses in VTA and STN. These findings demonstrate that the VTA, RRF and SNCd are the main ventral midbrain targets of ascending NE inputs, and that these connections undergo a major break-down in chronically MPTP-treated parkinsonian monkeys. This severe degeneration of the ascending NE system may contribute to the pathophysiology of ventral midbrain and STN neurons in PD.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Dopaminergic Neurons/drug effects , MPTP Poisoning/drug therapy , Mesencephalon/drug effects , Subthalamic Nucleus/drug effects , Animals , Dendrites/drug effects , Dendrites/metabolism , Disease Models, Animal , Dopaminergic Neurons/metabolism , MPTP Poisoning/pathology , Macaca mulatta , Male , Mesencephalon/physiopathology , Substantia Nigra/drug effects , Substantia Nigra/physiopathology , Subthalamic Nucleus/physiopathology , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...