Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 31(29): 295204, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32050168

ABSTRACT

Organic light-emitting diodes (OLEDs) have attracted increasing attention due to their superiority as high quality displays and energy-saving lighting. However, improving the efficiency of solution-processed devices especially based on blue emitter remains a challenge. Excitation of surface plasmons on metallic nanoparticles has potential for increasing the absorption and emission from optoelectronic devices. We demonstrate here that the incorporation of gold nano particles (GNPs) in the hole injection layer of poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid with an appropriate size and doping concentration can greatly enhance the efficiency OLED device especially at higher voltage. Apparently, the spectral of the multiple plasmon resonances of the GNPs and the luminescence of the emitting materials significantly overlap with each other. At 1000 cd m-2 for example, the power efficiency of a studied green device is increased from 29.0 to 36.2 lm W-1, an increment of 24.8%, and the maximum brightness improved from 21 550 to 27 810  cd m-2, an increment of 29.1%, as 2 wt% of a 12 nm GNP is incorporated. Remarkably, designed blue OLED also exhibited an increment of 50% and 35% in power efficacy at 100 and 1000 cd m-2, respectively, for same device structure. The reason why the enhancement is marked may be attributed to a strong absorption of the short-wavelength emission from the device by the gold nano particles, which in turn initiates a strong surface plasmon resonance effect, leading to a high device efficiency.

2.
Environ Technol ; 40(2): 226-238, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29017404

ABSTRACT

The increasing number of bacteria-related problems and presence of trace amounts of phosphate in treated wastewater effluents have become a growing concern in environmental research. The use of antibacterial agents and phosphate adsorbents for the treatment of wastewater effluents is of great importance. In this study, the potential applications of a synthesized polyaniline (PANI)-zirconium dioxide (ZrO2) composite as an antibacterial, phosphate adsorbent and anti-corrosion material were systematically investigated. The results of an antibacterial test reveal an effective area of inhibition of 14 and 18 mm for the Escherichia coli and Staphylococcus aureus bacterial strains, respectively. The antibacterial efficiency of the PANI-ZrO2 composite is twice that of commercial ZrO2. In particular, the introduction of PANI increased the specific surface area and roughness of the composite material, which was beneficial to increase the contact area with bacterial and phosphate. The experimental results demonstrated that phosphate adsorption studies using 200 mg P/L phosphate solution showed a significant phosphate removal efficiency of 64.4%, and the maximum adsorption capacity of phosphate on the solid surface of PANI-ZrO2 is 32.4 mg P/g. Furthermore, PANI-ZrO2 coated on iron substrate was tested for anti-corrosion studies by a natural salt spray test (7.5% NaCl), which resulted in the formation of no rust. To the best of our knowledge, no works have been reported on the synergistic effects of the PANI-ZrO2 composite as an antibacterial, anti-corrosion, and phosphate adsorbent material. PANI-ZrO2 composite is expected to be a promising comprehensive treatment method for water filters in the aquaculture industry and for use in water purification applications.


Subject(s)
Anti-Bacterial Agents , Phosphates , Aniline Compounds , Corrosion
3.
Beilstein J Nanotechnol ; 9: 2609-2617, 2018.
Article in English | MEDLINE | ID: mdl-30416911

ABSTRACT

Enhancement of X-ray emission was observed from a micro-jet of a nano-colloidal gold suspension in air under double-pulse excitation of ultrashort (40 fs) near-IR laser pulses. Temporal and spatial overlaps between the pre-pulse and the main pulse were optimized for the highest X-ray emission. The maximum X-ray intensity was obtained at a 1-7 ns delay of the main pulse irradiation after the pre-pulse irradiation with the micro-jet position shifted along the laser beam propagation. It was revealed that the volume around gold nanoparticles where the permittivity is near zero, ε ≈ 0, accounts for the strongest absorption, which leads to the effective enhancements of X-ray emission.

4.
Opt Express ; 25(16): 19497-19507, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041143

ABSTRACT

Photoacoustic signal enhancements were observed with a pair of time-delayed femtosecond pulses upon excitation of gold nanosphere colloidal suspension. A systematic experimental investigation of photoacoustic intensity within the delay time, Δt = 0 to 15 ns, was carried out. The results revealed a significant enhancement factor of ∼2 when the pre-pulse energy is 20-30% of the total energy. Pre-pulse and main pulse energy ratios, Ep(1):Es(2), were varied to determine the optimal ratio that yields to maximum photoacoustic signal enhancement. This enhancement was ascribed to the initial stage of thermalization and bubble generation in the nanosecond time scale. Pre-pulse scattering intensity measurements and numerical finite-difference time-domain calculations were performed to reveal dynamics and light field enchancement, respectively.

5.
Opt Express ; 25(20): 24109-24118, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041357

ABSTRACT

Femtosecond double-pulsed laser excitation of a water film in air showed enhancements of X-ray intensity as compared with single pulse irradiation. The position of the highest yield of X-rays strongly depends on temporal separation between the pre-pulse and the main-pulse (energy ratios where ∼ 1 : 10). The strongest X-ray emission was observed at 10-15 ns delay of the main-pulse. Nanoscale roughening of water surface can account for the observation.

6.
Opt Express ; 24(18): 19994-20001, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27607607

ABSTRACT

Femtosecond laser-induced hard X-ray generation in air from a 100-µm-thick solution film of distilled water or Au nano-sphere suspension was carried out by using a newly-developed automatic positioning system with 1-µm precision. By positioning the solution film for the highest X-ray intensity, the optimum position shifted upstream as the laser power increased due to breakdown. Optimized positioning allowed us to control X-ray intensity with high fidelity. X-ray generation from Au nano-sphere suspension and distilled water showed different power scaling. Linear and nonlinear absorption mechanism are analyzed together with numerical modeling of light delivery.

7.
Opt Express ; 24(13): 14781-92, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27410630

ABSTRACT

Enhanced photoacoustic (PA) intensity from gold nanosphere and nanorod colloidal suspensions in water under tightly-focused femtosecond pulsed laser irradiation was systematically investigated. PA signal amplitudes were measured by ultrasound transducers at frequencies of 5, 10, and 25 MHz. The experimental results revealed a linear-dependence of the relative photoacoustic amplitude on the laser power and the mechanism was attributed to non-radiative relaxation dynamics of surface plasmon oscillations. When gold nanorod with longitudinal absorption/extinction peak at 800 nm coincides with the wavelength of femtosecond laser pulses, the most efficient PA signal is generated. Laser excitation was kept within a thermal stability region of gold nanoparticles, i.e., colloidal suspension can be continuously reused for PA generation.

8.
Opt Express ; 24(15): 17050-9, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27464156

ABSTRACT

Strong absorption of femtosecond laser pulses in Au nano-colloidal suspensions was used to generate coherent ultrasound signals at 1-20 MHz frequency range. The most efficient ultrasound generation was observed at negative chirp values and was proportional to the pulse duration. Maximization of a dimensionless factor A ≡ αc0tp defined as the ratio of pulse duration tp and the time required for sound at speed c0 to cross the optical energy deposition length (an inverse of the absorption coefficient α) given by 1/(αc0). Chirp controlled pulse duration allows effective enhancement of ultrasound generation at higher frequencies (shorter wavelengths) and is promising for a high spatial resolution acoustic imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...