Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 18(7)2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29987254

ABSTRACT

Vehicles will soon be connected and will be interacting directly with each other and with the road infrastructure, bringing substantial benefits in terms of safety and traffic efficiency. The past decade has seen the development of different wireless access technologies for vehicle-to-everything (V2X) communications and an extensive set of related use cases have been drafted, each with its own requirements. In this paper, focusing on short-range communications, we analyze the technical and economic motivations that are driving the development of new road users' connectivity, discussing the international intentions to mandate on board devices for V2X communication. We also go in depth with the enabling wireless access technologies, from IEEE 802.11p to short-range Cellular-V2X and other complementary technologies, such as visible light communication (VLC) and millimeterWaves, up to hybrid communication and 5G. We conclude our survey with some performance comparison in urban realistic scenarios, underlying that the choice of the future enabling technology is not so easy to predict and mostly depends on mandatory laws at the international level.

2.
Sensors (Basel) ; 18(4)2018 Apr 12.
Article in English | MEDLINE | ID: mdl-29649149

ABSTRACT

Crowd sensing is a powerful tool to map and predict interests and events. In the future, it could be boosted by an increasing number of connected vehicles sharing information and intentions. This will be made available by on board wireless connected devices able to continuously communicate with other vehicles and with the environment. Among the enabling technologies, visible light communication (VLC) represents a low cost solution in the short term. In spite of the fact that vehicular communications cannot rely on the sole VLC due to the limitation provided by the light which allows communications in visibility only, VLC can however be considered to complement other wireless communication technologies which could be overloaded in dense scenarios. In this paper we evaluate the performance of VLC connected vehicles when urban crowd sensing is addressed and we compare the performance of sole vehicular visible light networks with that of VLC as a complementary technology of IEEE 802.11p. Results, obtained through a realistic simulation tool taking into account both the roadmap constraints and the technologies protocols, help to understand when VLC provides the major improvement in terms of delivered data varying the number and position of RSUs and the FOV of the receiver.

SELECTION OF CITATIONS
SEARCH DETAIL
...