Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Physiol Rep ; 5(2)2017 Jan.
Article in English | MEDLINE | ID: mdl-28126732

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease with a high prevalence of hypertension. NZBWF1 (SLE-Hyp) mice develop hypertension that can be prevented by modulating T cells. The peptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) decreases renal damage and improves renal function in a model of SLE without hypertension (MRL/lpr). However, it is not known whether Ac-SDKP prevents hypertension in NZBWF1 mice. We hypothesized that in SLE-Hyp, Ac-SDKP prevents hypertension and renal damage by modulating T cells. Animals were divided into four groups: (1) control + vehicle, (2) control + Ac-SDKP, (3) SLE + vehicle, and (4) SLE + Ac-SDKP Systolic blood pressure (SBP), albuminuria, renal fibrosis, and T-cell phenotype were analyzed. SBP was higher in SLE compared to control mice and was not decreased by Ac-SDKP treatment. Half of SLE mice developed an acute and severe form of hypertension accompanied by albuminuria followed by death. Ac-SDKP delayed development of severe hypertension, albuminuria, and early mortality, but this delay did not reach statistical significance. Ac-SDKP prevented glomerulosclerosis, but not interstitial fibrosis in SLE-Hyp mice. SLE-Hyp mice showed a decrease in helper and cytotoxic T cells as well as an increase in double negative lymphocytes and T helper 17 cells, but these cells were unaffected by Ac-SDKP In conclusion, Ac-SDKP prevents kidney damage, without affecting blood pressure in an SLE animal model. However, during the acute relapse of SLE, Ac-SDKP might also delay the manifestation of an acute and severe form of hypertension leading to early mortality. Ac-SDKP is a potential tool to treat renal damage in SLE-Hyp mice.


Subject(s)
Hypertension/immunology , Kidney Diseases/immunology , Lupus Erythematosus, Systemic/physiopathology , Oligopeptides/administration & dosage , Albuminuria/prevention & control , Animals , Blood Pressure/drug effects , Female , Fibrosis/prevention & control , Hypertension/complications , Hypertension/prevention & control , Kidney/drug effects , Kidney/pathology , Kidney Diseases/complications , Kidney Diseases/pathology , Kidney Diseases/prevention & control , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/mortality , Mice , Oligopeptides/therapeutic use , Survival Analysis , T-Lymphocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...