Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Sci Rep ; 14(1): 5063, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38424459

ABSTRACT

The ketogenic diet (KD) has been shown to be effective in refractory epilepsy after long-term administration. However, its interference with short-term brain metabolism and its involvement in the early process leading to epilepsy remain poorly understood. This study aimed to assess the effect of a short-term ketogenic diet on cerebral glucose metabolic changes, before and after status epilepticus (SE) in rats, by using [18F]-FDG PET. Thirty-nine rats were subjected to a one-week KD (KD-rats, n = 24) or to a standard diet (SD-rats, n = 15) before the induction of a status epilepticus (SE) by lithium-pilocarpine administrations. Brain [18F]-FDG PET scans were performed before and 4 h after this induction. Morphological MRIs were acquired and used to spatially normalize the PET images which were then analyzed voxel-wisely using a statistical parametric-based method. Twenty-six rats were analyzed (KD-rats, n = 15; SD-rats, n = 11). The 7 days of the KD were associated with significant increases in the plasma ß-hydroxybutyrate level, but with an unchanged glycemia. The PET images, recorded after the KD and before SE induction, showed an increased metabolism within sites involved in the appetitive behaviors: hypothalamic areas and periaqueductal gray, whereas no area of decreased metabolism was observed. At the 4th hour following the SE induction, large metabolism increases were observed in the KD- and SD-rats in areas known to be involved in the epileptogenesis process late-i.e., the hippocampus, parahippocampic, thalamic and hypothalamic areas, the periaqueductal gray, and the limbic structures (and in the motor cortex for the KD-rats only). However, no statistically significant difference was observed when comparing SD and KD groups at the 4th hour following the SE induction. A one-week ketogenic diet does not prevent the status epilepticus (SE) and associated metabolic brain abnormalities in the lithium-pilocarpine rat model. Further explorations are needed to determine whether a significant prevention could be achieved by more prolonged ketogenic diets and by testing this diet in less severe experimental models, and moreover, to analyze the diet effects on the later and chronic stages leading to epileptogenesis.


Subject(s)
Diet, Ketogenic , Status Epilepticus , Rats , Animals , Pilocarpine/pharmacology , Lithium/pharmacology , Rats, Wistar , Fluorodeoxyglucose F18/pharmacology , Status Epilepticus/chemically induced , Status Epilepticus/diagnostic imaging , Brain/diagnostic imaging , Hippocampus , Disease Models, Animal
2.
Cancer Imaging ; 22(1): 16, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303961

ABSTRACT

BACKGROUND: This translational study explores multi-tracer PET imaging for the non-invasive detection of the IDH1 mutation which is a positive prognostic factor in glioma. METHODS: U87 human high-grade glioma (HGG) isogenic cell lines with or without the IDH1 mutation (CRISP/Cas9 method) were stereotactically grafted into rat brains, and examined, in vitro, in vivo and ex vivo. PET imaging sessions, with radiotracers specific for glycolytic metabolism ([18F]FDG), amino acid metabolism ([18F]FDopa), and inflammation ([18F]DPA-714), were performed sequentially during 3-4 days. The in vitro radiotracer uptake was expressed as percent per million cells. For each radiotracer examined in vivo, static analyses included the maximal and mean tumor-to-background ratio (TBRmax and TBRmean) and metabolic tumor volume (MTV). Dynamic analyses included the distribution volume ratio (DVR) and the relative residence time (RRT) extracted from a reference Logan model. Ex vivo analyses consisted of immunological analyses. RESULTS: In vitro, IDH1+ cells (i.e. cells expressing the IDH1 mutation) showed lower levels of [18F]DPA-714 uptake compared to IDH1- cells (p < 0.01). These results were confirmed in vivo with lower [18F]DPA-714 uptake in IDH+ tumors (3.90 versus 5.52 for TBRmax, p = 0.03). Different values of [18F]DPA-714 and [18F] FDopa RRT (respectively 11.07 versus 22.33 and 2.69 versus - 1.81 for IDH+ and IDH- tumors, p < 0.02) were also observed between the two types of tumors. RRT [18F]DPA-714 provided the best diagnostic performance to discriminate between the two cell lines (AUC of 100%, p < 0.01). Immuno-histological analyses revealed lower expression of Iba-1 and TSPO antibodies in IDH1+ tumors. CONCLUSIONS: [18F]DPA-714 and [18F] FDopa both correlate with the presence of the IDH1 mutation in HGG. These radiotracers are therefore good candidates for translational studies investigating their clinical applications in patients.


Subject(s)
Glioma , Animals , Fluorodeoxyglucose F18 , Glioma/diagnostic imaging , Glioma/genetics , Glioma/metabolism , Humans , Mutation , Positron-Emission Tomography/methods , Rats , Receptors, GABA/genetics
3.
Molecules ; 26(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34885871

ABSTRACT

Due to their very poor prognosis and a fatal outcome, secondary brain tumors are one of the biggest challenges in oncology today. From the point of view of the early diagnosis of these brain micro- and macro-tumors, the sensitivity and specificity of the diagnostic tools constitute an obstacle. Molecular imaging, such as Positron Emission Tomography (PET), is a promising technique but remains limited in the search for cerebral localizations, given the commercially available radiotracers. Indeed, the [18F]FDG PET remains constrained by the physiological fixation of the cerebral cortex, which hinders the visualization of cerebral metastases. Tumor angiogenesis is recognized as a crucial phenomenon in the progression of malignant tumors and is correlated with overexpression of the neuropilin-1 (NRP-1) receptor. Here, we describe the synthesis and the photophysical properties of the new gallium-68 radiolabeled peptide to target NRP-1. The KDKPPR peptide was coupled with gallium-68 anchored into a bifunctional NODAGA chelating agent, as well as Cy5 for fluorescence detection. The Cy5 absorbance spectra did not change, whereas the molar extinction coefficient (ε) decreased drastically. An enhancement of the fluorescence quantum yield (φF) could be observed due to the better water solubility of Cy5. [68Ga]Ga-NODAGA-K(Cy5)DKPPR was radiosynthesized efficiently, presented hydrophilic properties (log D = -1.86), and had high in vitro stability (>120 min). The molecular affinity and the cytotoxicity of this new chelated radiotracer were evaluated in vitro on endothelial cells (HUVEC) and MDA-MB-231 cancer cells (hormone-independent and triple-negative line) and in vivo on a brain model of metastasis in a nude rat using the MDA-MB-231 cell line. No in vitro toxicity has been observed. The in vivo preliminary experiments showed promising results, with a high contrast between the healthy brain and metastatic foci for [68Ga]Ga-NODAGA-K(Cy5)DKPPR.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/diagnosis , Gallium Radioisotopes/chemistry , Neuropilin-1/metabolism , Peptides/chemistry , Positron-Emission Tomography , Radiopharmaceuticals/chemistry , Animals , Cell Line, Tumor , Cell Proliferation , Cell Tracking , Cerebellum/diagnostic imaging , Cerebellum/pathology , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Peptides/chemical synthesis , Protein Binding , Radiopharmaceuticals/chemical synthesis , Rats, Nude , Recombinant Proteins/metabolism , Surface Plasmon Resonance , Water/chemistry
4.
Mol Nutr Food Res ; 65(13): e2100065, 2021 07.
Article in English | MEDLINE | ID: mdl-33991387

ABSTRACT

SCOPE: Vitamin B12 and folate (methyl donors) deficiency is frequent during pregnancy. Experimental rat models with methyl donor deficit during pregnancy and lactation (Initial methyl donor deficit (iMDD)) produce impaired myocardium fatty acid oxidation and mitochondrial energy metabolism at weaning. METHODS AND RESULTS: The consequences of iMDD on heart of rat pups under normal diet after weaning and high fat diet (HF) between day (D) 50 and D185 are investigated. iMDD/HF induces increased histological fibrosis and increased B-type natriuretic peptide blood level. Inflammation is evidenced by increased protein expression of NFkB, Caspase1, and IL1ß and fibrosis by increased expression of αSMA, col1a1, and col1a2 in females, but not in males. Fibrosis is related to increased angiotensin at D50 and D185 and increased protein expression of TGFB1 and AT1 angiotensin receptors at D185. The limited fibrosis in males is consistent with increased expression of AT2, the antagonist receptor of AT1. The increased expression of GLUT4 and decreased expression of PGC1α and PPARα reflect a shift from fatty acid oxidation to glycolysis. CONCLUSION: Developmental programming by iMDD produces cardiomyopathy in female offspring exposed to HF. The cardiomyopathy is linked to inflammation and fibrosis through angiotensin-AT2 and TGFB1 pathways and alteration of energy metabolism.


Subject(s)
Cardiomyopathies/chemically induced , Folic Acid Deficiency , Maternal Nutritional Physiological Phenomena , Vitamin B 12 Deficiency , Animals , Diet, High-Fat/adverse effects , Energy Metabolism , Female , Fetal Development , Folic Acid , Lactation , Lipid Metabolism , Male , Myocardium/pathology , Pregnancy , Rats , Rats, Wistar , Receptor, Angiotensin, Type 2 , Transforming Growth Factor beta1 , Ventricular Function, Left , Vitamin B 12
5.
Lab Chip ; 21(11): 2272-2282, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33912890

ABSTRACT

iMiDEV™ microfluidic system is a new automated tool for a small-scale production of radiopharmaceuticals. This new radiochemistry module utilizes microfluidic cassettes capable of producing diversified radiopharmaceuticals in liquid phase reactions in an automated synthesizer. The user interface is intuitive and designed to give the operator all the information required and to allow driving the synthesis either manually or fully automatically. In this work, we have demonstrated liquid phase reaction and presented the first results of an efficient fully automated [18F]NaF radiosynthesis on the iMiDEV™ platform. Different parameters such as a type of cyclotron targets, initial activity, concentration and volume of the fluoride-18 targetry have been investigated in order to elaborate the optimised radiolabelling of the ligand. Single and double sodium [18F]fluoride synthesis procedures have been successfully developed using two chambers of the cassette. A single-dose of radiotracer was produced in an average radiochemical yield of 87% (decay corrected) within 8 min and quality control tests were performed as per European Pharmacopoeia.


Subject(s)
Microfluidics , Radiopharmaceuticals , Fluorine Radioisotopes , Quality Control , Radiochemistry
6.
RSC Adv ; 11(13): 7672-7681, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-35423261

ABSTRACT

The design of bifunctional chelating agents (BFCA) allowing straightforward radiometal labelling of biomolecules is a current challenge. We report herein the development of a bifunctional chelating agent based on a DOTA chelator linked to a C-glycosyl compound, taking advantage of the robustness and hydrophilicity of this type of carbohydrate derivative. This new BFCA was coupled with success by CuAAC with c(RGDfK) for αvß3 integrin targeting. As attested by in vitro evaluation, the conjugate DOTA-C-glyco-c(RGDfC) demonstrated high affinity for αvß3 integrins (IC50 of 42 nM). [68Ga]Ga-DOTA-C-glyco-c(RGDfK) was radiosynthesized straightforwardly and showed high hydrophilic property (log D 7.4 = -3.71) and in vitro stability (>120 min). Preliminary in vivo PET study of U87MG engrafted mice gave evidence of an interesting tumor-to-non-target area ratio. All these data indicate that [68Ga]Ga-DOTA-C-glyco-c(RGDfK) allows monitoring of αvß3 expression and could thus be used for cancer diagnosis. The DOTA-C-glycoside BFCA reported here could also be used with various ligands and chelating other (radio)metals opening a broad scope of applications in imaging modalities and therapy.

7.
J Nucl Cardiol ; 27(2): 612-618, 2020 04.
Article in English | MEDLINE | ID: mdl-30128917

ABSTRACT

BACKGROUND: Short periods of fasting and/or low-carbohydrate diet have been proven beneficial for decreasing the myocardial uptake of 18F-fluorodeoxyglucose (18F-FDG) and enhancing the detection of inflammatory heart diseases by 18F-FDG positron emission tomography (PET). This study aimed at determining whether this benefit is increased when a low-carbohydrate ketogenic diet is prolonged up to 7 days. METHODS: Wistar rats underwent serial 18F-FDG-PET imaging after an 18-hour fasting period and after 2, 4 and 7 days of a ketogenic diet (3% carbohydrate) and they were compared to rats submitted to the same protocol but with normal diet (44% carbohydrate). The 18F-FDG-PET/ketogenic protocol was also applied in rats with immune myocarditis (injection of porcine cardiac myosin). RESULTS: The 7-day ketogenic diet was associated with (1) a sustained increase in circulating ketone bodies at an equivalent level to that reached after 18-hour fasting, (2) a gradual decrease in 18F-FDG uptake within normal myocardium reaching a lower level compared to fasting at the 7th day (myocardium-to-blood ratios: 1.68 ± 1.02 vs 3.25 ± 1.40, P < .05) and (3) a high 18F-FDG-PET detectability of myocarditis areas. CONCLUSION: One-week extension of a ketogenic diet provides a further decrease in the 18F-FDG uptake of normal myocardium and a high detectability of inflammatory areas.


Subject(s)
Diet, Ketogenic , Fluorodeoxyglucose F18 , Heart Diseases/diagnostic imaging , Myocarditis/diagnostic imaging , Positron-Emission Tomography/methods , Animal Feed , Animals , Diet, Carbohydrate-Restricted , Dietary Carbohydrates , Fasting , Heart , Inflammation , Male , Myocardium/metabolism , Myosins/metabolism , Radiopharmaceuticals , Rats , Rats, Wistar , Swine
8.
EJNMMI Res ; 8(1): 51, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29904818

ABSTRACT

BACKGROUND: Tracers triggering αvß3 integrins, such as certain RGD-containing peptides, were found promising in previous pilot studies characterizing high-grade gliomas. However, only limited comparisons have been performed with current PET tracers. This study aimed at comparing the biodistribution of 18F-fluorodeoxyglucose (18F-FDG) with that of 68Ga-NODAGA-RGD, an easily synthesized monomeric RGD compound with rapid kinetics, in two different rodent models of engrafted human glioblastoma. METHODS: Nude rodents bearing human U87-MG glioblastoma tumor xenografts in the flank (34 tumors in mice) or in the brain (5 tumors in rats) were analyzed. Kinetics of 68Ga-NODAGA-RGD and of 18F-FDG were compared with PET imaging in the same animals, along with additional autohistoradiographic analyses and blocking tests for 68Ga-NODAGA-RGD. RESULTS: Both tracers showed a primary renal route of clearance, although with faster clearance for 68Ga-NODAGA-RGD resulting in higher activities in the kidneys and bladder. The tumor activity from 68Ga-NODAGA-RGD, likely corresponding to true integrin binding (i.e., suppressed by co-injection of a saturating excess of unlabeled RGD), was found relatively high, but only at the 2nd hour following injection, corresponding on average to 53% of total tumor activity. Tumor uptake of 68Ga-NODAGA-RGD decreased progressively with time, contrary to that of 18F-FDG, although 68Ga-NODAGA-RGD exhibited 3.4 and 3.7-fold higher tumor-to-normal brain ratios on average compared to 18F-FDG in mice and rat models, respectively. Finally, ex-vivo analyses revealed that the tumor areas with high 68Ga-NODAGA-RGD uptake also exhibited the highest rates of cell proliferation and αv integrin expression, irrespective of cell density. CONCLUSIONS: 68Ga-NODAGA-RGD has a high potential for PET imaging of glioblastomas, especially for areas with high integrin expression and cell proliferation, although PET recording needs to be delayed until the 2nd hour following injection in order to provide sufficiently high integrin specificity.

9.
Bioorg Med Chem ; 25(20): 5603-5612, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28893600

ABSTRACT

This study describes the synthesis and radiosynthesis of eight new [18F]fluoro-inositol-based radiotracers in myo- and scyllo-inositol configuration. These radiotracers are equipped with a propyl linker bearing fluorine-18. This fluorinated arm is either on a hydroxyl group, i.e. O-alkylated inositols, or on the cyclohexyl backbone, i.e. C-branched derivatives. To modulate lipophilicity, inositols were synthesized in acetylated or hydroxylated form. Automated radiosynthesis was performed on the AllInOne module and the radiotracers were produced in good radiochemical yields (15-31.5% dc). Preliminary in vivo preclinical evaluation of these eight [18F]fluoro-inositols as Positron Emission Tomography (PET) imaging agents in a breast tumour-bearing mouse model was performed and compared with [18F]-2-fluoro-2-deoxy-d-glucose ([18F]FDG). Amongst the different inositols, [18F]myo-2 showed the highest tumour uptake 2.34±0.39%ID/g, revealing the potential of this tracer for monitoring breast cancer.


Subject(s)
Fluorine Radioisotopes , Inositol/chemistry , Positron-Emission Tomography , Radiopharmaceuticals , Animals , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Disease Models, Animal , Female , Fluorine Radioisotopes/standards , Humans , Inositol/analogs & derivatives , Inositol/chemical synthesis , Mice , Molecular Structure
10.
Mol Imaging Biol ; 19(5): 731-735, 2017 10.
Article in English | MEDLINE | ID: mdl-28108871

ABSTRACT

PURPOSE: The Statistical Parametric Mapping (SPM) software is frequently used for the quantitative analysis of patients' brain images obtained from 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]FDG PET). However, its adaptation to small animals is difficult, particularly for the initial step of spatial normalization which requires a specific brain anatomical template. This study was aimed at determining whether SPM analysis can be applied to rat, and more specifically to the lithium-pilocarpine model of epilepsy, by using an adaptive template. This template developed for PET clinical imaging is constructed from a block matching algorithm. PROCEDURES: SPM analysis of brain [18F]FDG PET images from Sprague-Dawley rats was used with the block matching (BM) adaptive template for the detection of brain abnormalities (1) artificially inserted within the initially normal brain images of 10 rats (50 % decrease in signal intensity within 40 spheres of 0.5 to 1.0 mm in diameter) and (2) occurring at 4 h (n = 16), 48 h (n = 15), and 8 days (n = 13) after lithium-pilocarpine treatment. RESULTS: Concordant positive clusters were documented for all inserted abnormalities, whereas no aberrant clusters were documented in remote brain areas. Positive clusters were also detected on sites known to be involved in the epileptogenesis process of the lithium-pilocarpine model (piriform and entorhinal cortex, hippocampus), with the expected time-specific changes involving an early hypermetabolism followed by a severe hypometabolism and a subsequent partial recovery. CONCLUSION: A quantitative SPM analysis of brain [18F]FDG PET images may be applied to the monitoring of rat brain function when using an adaptive BM template.


Subject(s)
Brain/diagnostic imaging , Fluorodeoxyglucose F18/chemistry , Positron-Emission Tomography , Statistics as Topic , Animals , Imaging, Three-Dimensional , Male , Rats, Sprague-Dawley
11.
J Labelled Comp Radiopharm ; 59(2): 54-62, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26708055

ABSTRACT

This work describes the development of new 6-[(18) F]fluoro-carbohydrate-based prosthetic groups equipped with an azido arm that are able to participate in copper(I)-catalyzed cycloadditions for (18) F labeling of biomolecules under mild conditions. The radiolabeling in high radiochemical yields (up to 68 ± 6%) of these different prosthetic groups is presented. The flexibility of the azido arm introduced on the carbohydrate moieties allows efficient click reactions with different alkyne functionalized peptides such as gluthation or Arg-Gly-Asp derivatives in order to prepare glycopeptides. The radiosyntheses of (18) F-labeled glycopeptides proceed in high radiochemical yields (up to 76%) in an automated process with excellent radiochemical purity. The addition of a sugar moiety on peptides should enhance the bioavailability, pharmacokinetic, and in vivo clearance properties of these glycopeptides, compared with the unlabeled native peptide, and these properties are highly favorable for positron emission tomography imaging. A high uptake of (18) F-ß-gluco-c(RGDfC) is shown by positron emission tomography imaging in a subcutaneous abscess model in the rat, revealing the potential of this tracer to monitor integrin expression as a part of inflammation and/or angiogenesis processes.


Subject(s)
Fluorine Radioisotopes/chemistry , Glycopeptides/chemistry , Radiopharmaceuticals/chemical synthesis , Animals , Click Chemistry/methods , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Rats , Tissue Distribution
12.
Circ Res ; 116(11): 1772-82, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25840803

ABSTRACT

RATIONALE: Optimal outcome after myocardial infarction (MI) depends on a coordinated healing response in which both debris removal and repair of the myocardial extracellular matrix play a major role. However, adverse remodeling and excessive inflammation can promote heart failure, positioning leucocytes as central protagonists and potential therapeutic targets in tissue repair and wound healing after MI. OBJECTIVE: In this study, we examined the role of triggering receptor expressed on myeloid cells-1(TREM-1) in orchestrating the inflammatory response that follows MI. TREM-1, expressed by neutrophils and mature monocytes, is an amplifier of the innate immune response. METHODS AND RESULTS: After infarction, TREM-1 expression is upregulated in ischemic myocardium in mice and humans. Trem-1 genetic invalidation or pharmacological inhibition using a synthetic peptide (LR12) dampens myocardial inflammation, limits neutrophils recruitment and monocyte chemoattractant protein-1 production, thus reducing classical monocytes mobilization to the heart. It also improves left ventricular function and survival in mice (n=20-22 per group). During both permanent and transient myocardial ischemia, Trem-1 blockade also ameliorates cardiac function and limits ventricular remodeling as assessed by fluorodeoxyglucose-positron emission tomographic imaging and conductance catheter studies (n=9-18 per group). The soluble form of TREM-1 (sTREM-1), a marker of TREM-1 activation, is detectable in the plasma of patients having an acute MI (n=1015), and its concentration is an independent predictor of death. CONCLUSIONS: These data suggest that TREM-1 could constitute a new therapeutic target during acute MI.


Subject(s)
Inflammation/metabolism , Membrane Glycoproteins/metabolism , Myocardial Infarction/metabolism , Receptors, Immunologic/metabolism , Acute Disease , Amino Acid Sequence , Animals , Blotting, Western , Coronary Disease/blood , Gene Expression , Humans , Inflammation/genetics , Inflammation/physiopathology , Leukocytes/metabolism , Leukocytes/pathology , Male , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/blood , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Infarction/physiopathology , Peptides/pharmacology , Rats, Wistar , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/blood , Receptors, Immunologic/genetics , Reverse Transcriptase Polymerase Chain Reaction , Survival Analysis , Triggering Receptor Expressed on Myeloid Cells-1 , Ventricular Function, Left/drug effects , Ventricular Function, Left/genetics , Ventricular Function, Left/physiology , Ventricular Remodeling/drug effects , Ventricular Remodeling/genetics , Ventricular Remodeling/physiology
13.
BMC Genomics ; 15: 460, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24917243

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) constitute a novel class of non-coding RNAs. LncRNAs regulate gene expression, thus having the possibility to modulate disease progression. In this study, we investigated the changes of lncRNAs expression in the heart after myocardial infarction (MI). RESULTS: Adult male C57/BL6 mice were subjected to coronary ligation or sham operation. In a derivation group of 4 MI and 4 sham-operated mice sacrificed 24 hours after surgery, microarray analysis showed that MI was associated with up-regulation of 20 lncRNAs and down-regulation of 10 lncRNAs (fold-change >2). Among these, 2 lncRNAs, called myocardial infarction-associated transcript 1 (MIRT1) and 2 (MIRT2), showed robust up-regulation in the MI group: 5-fold and 13-fold, respectively. Up-regulation of these 2 lncRNAs after MI was confirmed by quantitative PCR in an independent validation group of 8 MI and 8 sham-operated mice (9-fold and 16-fold for MIRT1 and MIRT2, P < 0.001). In a time-course analysis involving 21 additional MI mice, the expression of both lncRNAs peaked 24 hours after MI and returned to baseline after 2 days. In situ hybridization revealed an up-regulation of MIRT1 expression in the left ventricle of MI mice. Expression of MIRT1 and MIRT2 correlated with the expression of multiple genes known to be involved in left ventricular remodeling. Mice with high level of expression of MIRT1 and MIRT2 had a preserved ejection fraction. CONCLUSION: Myocardial infarction induces important changes in the expression of lncRNAs in the heart. This study motivates further investigation of the role of lncRNAs in left ventricular remodeling.


Subject(s)
Heart Ventricles/metabolism , Myocardial Infarction/genetics , RNA, Long Noncoding/genetics , Animals , Disease Models, Animal , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/pathology , Oligonucleotide Array Sequence Analysis , Stroke Volume , Ventricular Remodeling
14.
Int J Cardiovasc Imaging ; 30(2): 449-56, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24384858

ABSTRACT

Spontaneously hypertensive heart failure rats (SHHF) appear to constitute an original model for analyzing the evolution of the metabolic syndrome towards heart failure. This study aimed to characterize early cardiac dysfunction and remodeling in SHHF rats: (1) as compared with spontaneously hypertensive rats (SHR) and with a control group of Kyoto rats (WKY), and (2) by using the 3-dimensional quantitative analysis provided by acipimox-enhanced positron emission tomography (PET) with (18)F-fluorodesoxyglucose (FDG). Left ventricular (LV) ejection fraction (EF) and volume were quantified by automatic software on the FDG-PET images recorded in SHR (n = 20), SHHF (n = 18) and WKY-rats (n = 19) at ages 3 or 10 months old. Arterial blood pressure was determined by cardiac catheterization and cardiac fibrosis was quantified after sacrifice. Blood pressure was similarly elevated in SHR and SHHF rats (respective systolic blood pressures at 10-months: 199 ± 39 vs. 205 ± 2 mmHg), but SHHF rats had higher body mass than SHR rats (at 10-months, 630 ± 36 vs. 413 ± 27 g, p < 0.05) and higher blood levels of cholesterol and of triglycerides. At 3 months, cardiac parameters did not show significant differences between groups but at 10-months, SHHF and SHR rats exhibited an enhancement in myocardial mass and fibrosis associated with a clear decline in LV-EF (SHHF: 46 ± 6 %; SHR: 47 ± 5 %) as compared with WKY (56 ± 6 %, p < 0.01 for both comparisons). Cardiac remodeling of SHHF rats was clearly observable by FDG-PET from the age of 10-months, but in a similar way to that observed for SHR rats, suggesting a predominant role of hypertension.


Subject(s)
Fluorodeoxyglucose F18 , Heart Failure/diagnostic imaging , Heart Ventricles/diagnostic imaging , Hypertension/complications , Imaging, Three-Dimensional , Positron-Emission Tomography/methods , Pyrazines , Radiographic Image Interpretation, Computer-Assisted , Radiopharmaceuticals , Ventricular Remodeling , Animals , Arterial Pressure , Cardiac Catheterization , Disease Models, Animal , Fibrosis , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/physiopathology , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Lipid Metabolism , Male , Predictive Value of Tests , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Stroke Volume , Time Factors , Ventricular Function, Left
15.
EJNMMI Res ; 3(1): 65, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-24028474

ABSTRACT

BACKGROUND: Adenosine may have beneficial effects on left ventricular function after myocardial infarction (MI), but the magnitude of this effect on remote and MI areas is controversial. We assessed the long-term effects of adenosine after MI using electrocardiogram-triggered 18 F-fluorodeoxyglucose positron emission tomography. METHODS: Wistar rats were subjected to coronary ligation and randomized into three groups treated daily for 2 months by NaCl (control; n = 7), 2-chloroadenosine (CADO; n = 8) or CADO with 8-sulfophenyltheophilline, an antagonist of adenosine receptors (8-SPT; n = 8). RESULTS: After 2 months, control rats exhibited left ventricular remodelling, with increased end-diastolic volume and decreased ejection fraction. Left ventricular remodelling was not significantly inhibited by CADO. Segmental contractility, as assessed by the change in myocardial thickening after 2 months, was improved in CADO rats compared to control rats (+1.6% ± 0.8% vs. -2.3% ± 0.8%, p < 0.001). This improvement was significant in border (+5.6% ± 0.8% vs. +1.5% ± 0.8%, p < 0.001) and remote (-4.0% ± 1.0% vs. -10.4% ± 1.3%, p < 0.001) segments, but absent in MI segments. Histological analyses revealed that CADO reduced fibrosis, cardiomyocyte hypertrophy and apoptosis. Protective effects of CADO were blunted by 8-SPT. CONCLUSION: Long-term administration of adenosine protects the left ventricle from contractile dysfunction following MI.

16.
Int J Cardiovasc Imaging ; 29(4): 809-17, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23404382

ABSTRACT

This study aimed at comparing long-term variations in the perfusion of chronic myocardial infarction (MI) areas after local injections of autologous bone marrow stem cells (BMSCs). 14 coronary ligated rats with transmural chronic MI (4 months) were used: a control group (n = 7) versus a treated group (n = 7) in which (111)In labeled-BMSCs were directly engrafted on MI areas. By using (111)In/(99m)Tc SPECT and Sestamibi gated-SPECT,. left ventricle perfusion and function were monitored in all animals by serial (99m)Tc-Sestamibi pinhole gated-SPECT over a period of 6 months. Post-therapeutic myocardial perfusion improved as early as 48 h following injection in the 2 groups. This benefice was sustained during the 6-month follow-up in the non-engrafted MI-areas from treated rats (at 6-months: +10 ± 5 %), whereas the engrafted ones, as well as the MI areas from control rats, exhibited progressive deterioration over time (at 6-months: -9 ± 10 % and -5 ± 3 %, respectively). Perfusion enhancement of the chronic MI areas treated by BMSCs transplantation is: (1) marked in the following days, presumably because of an unspecific inflammatory reaction, and (2) sustained over the long term but only outside the sites of cell engraftment, suggesting a distant paracrine effect of transplanted cells.


Subject(s)
Coronary Circulation , Myocardial Infarction/surgery , Myocardium/pathology , Stem Cell Transplantation , Animals , Cells, Cultured , Disease Models, Animal , Indium Radioisotopes , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Perfusion Imaging/methods , Radiopharmaceuticals , Rats , Rats, Wistar , Recovery of Function , Regeneration , Technetium Tc 99m Sestamibi , Time Factors , Tomography, Emission-Computed, Single-Photon
17.
PLoS One ; 8(1): e54135, 2013.
Article in English | MEDLINE | ID: mdl-23326587

ABSTRACT

BACKGROUND: Administration of endothelial progenitor cells (EPC) represents a promising option to regenerate the heart after myocardial infarction, but is limited because of low recruitment and engraftment in the myocardium. Mobilization and migration of EPC are mainly controlled by stromal cell-derived factor 1α (SDF-1α) and its receptor CXCR4. We hypothesized that adenosine, a cardioprotective molecule, may improve the recruitment of EPC to the heart. METHODS: EPC were obtained from peripheral blood mononuclear cells of healthy volunteers. Expression of chemokines and their receptors was evaluated using microarrays, quantitative PCR, and flow cytometry. A Boyden chamber assay was used to assess chemotaxis. Recruitment of EPC to the infarcted heart was evaluated in rats after permanent occlusion of the left anterior descending coronary artery. RESULTS: Microarray analysis revealed that adenosine modulates the expression of several members of the chemokine family in EPC. Among these, CXCR4 was up-regulated by adenosine, and this result was confirmed by quantitative PCR (3-fold increase, P<0.001). CXCR4 expression at the cell surface was also increased. This effect involved the A(2B) receptor. Pretreatment of EPC with adenosine amplified their migration towards recombinant SDF-1α or conditioned medium from cardiac fibroblasts. Both effects were abolished by CXCR4 blocking antibodies. Adenosine also increased CXCR4 under ischemic conditions, and decreased miR-150 expression. Binding of miR-150 to the 3' untranslated region of CXCR4 was verified by luciferase assay. Addition of pre-miR-150 blunted the effect of adenosine on CXCR4. Administration of adenosine to rats after induction of myocardial infarction stimulated EPC recruitment to the heart and enhanced angiogenesis. CONCLUSION: Adenosine increases the migration of EPC. The mechanism involves A(2B) receptor activation, decreased expression of miR-150 and increased expression of CXCR4. These results suggest that adenosine may be used to enhance the capacity of EPC to revascularize the ischemic heart.


Subject(s)
Adenosine/administration & dosage , Endothelial Cells , MicroRNAs , Receptors, CXCR4 , Adenosine/metabolism , Cell Movement/drug effects , Cell- and Tissue-Based Therapy , Endothelial Cells/cytology , Endothelial Cells/metabolism , HEK293 Cells , Humans , Leukocytes, Mononuclear , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Regeneration/genetics , Stem Cells/cytology , Stem Cells/metabolism , Up-Regulation/drug effects
18.
Anesthesiology ; 116(5): 1083-91, 2012 May.
Article in English | MEDLINE | ID: mdl-22407285

ABSTRACT

BACKGROUND: Myocardial depression is a frequent event during septic shock and may mimic a cardiogenic shock state with decreased cardiac output. Nevertheless, data are scarce regarding the myocardial effects of vasopressors used to treat hypotension. In this study, the authors compared the effects of three commonly used vasopressors acting on different adrenergic receptors on myocardial function in a rodent model of septic shock, as explored with conductance catheter and positron emission tomography. METHODS: Septic shock was induced in rats by peritonitis. Eighteen hours after septic insult, vasopressors were titrated to increase mean arterial pressure by 20% compared with baseline values. RESULTS: We observed that peritonitis was associated with arterial hypotension and systolodiastolic dysfunction. Norepinephrine and epinephrine improved mean arterial pressure, cardiac output, and preload recruitable stroke work, a load-independent measure of systolic function, as well as diastolic function and ventriculoarterial coupling. Heart rate, myocardial oxygen consumption, and arrhythmia incidence were furthermore increased in the epinephrine group. Conversely, phenylephrine, a peripheral α-agonist, exhibited deleterious effects on systolodiastolic function and ventriculoarterial coupling. Conductance catheter and positron emission tomography yielded identical results with regard to myocardial function evolution under vasopressor treatment. CONCLUSIONS: Phenylephrine, a drug without ß-1 effects, was associated with decreased ventricular performance and ventriculoarterial uncoupling, whereas epinephrine and norepinephrine improved global hemodynamics and myocardial function in severely hypokinetic and hypotensive experimental septic shock. Nevertheless, epinephrine was associated with increased myocardial oxygen consumption. Thus, norepinephrine appears to be a more reliable and safer strategy as a first-line therapy in this particular setting.


Subject(s)
Epinephrine/administration & dosage , Epinephrine/therapeutic use , Heart Diseases/drug therapy , Norepinephrine/administration & dosage , Norepinephrine/therapeutic use , Phenylephrine/administration & dosage , Phenylephrine/therapeutic use , Shock, Septic/drug therapy , Vasoconstrictor Agents/administration & dosage , Vasoconstrictor Agents/therapeutic use , Adenine Nucleotides/metabolism , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Blood Pressure/physiology , Cardiac Output/physiology , Catheterization , Cecum/injuries , Heart Diseases/diagnostic imaging , Heart Diseases/physiopathology , Heart Rate/physiology , Lactic Acid/metabolism , Ligation , Male , Myocardial Contraction/drug effects , Myocardium/metabolism , Myocardium/pathology , Oxygen Consumption/physiology , Peritonitis/complications , Phenylephrine/adverse effects , Positron-Emission Tomography , Rats , Rats, Wistar , Shock, Septic/diagnostic imaging , Shock, Septic/physiopathology , Stroke Volume/physiology
19.
Int J Cardiovasc Imaging ; 28(6): 1407-15, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22116590

ABSTRACT

The rat myocardial infarction (MI) model is widely used to study left ventricular (LV) remodeling. In this study, acipimox-enhanced (18)F-Fluorodeoxyglucose (FDG) gated-positron emission tomography (PET) was assessed for characterizing and predicting early remodeling in the rat infarct model. Nineteen Wistar rats had surgical occlusion of the left anterior descending coronary artery and 7 were sham-operated. PET was scheduled 48 h and 2 weeks later for quantifying MI area and LV function. Segments with <50% of FDG uptake had histological evidence of MI (74 ± 9% decrease in parietal thickness, fibrosis development). At 48 h, MI area was large (>35% of LV) in 6 rats, moderate (15-35% of LV) in 8 rats, limited (<15% of LV) in 5 rats and absent in the 7 sham rats. LV remodeling, assessed through the 2 weeks increase in end-diastolic volume, increased between rats with limited, moderate and large MI (+72 ± 25, +109 ± 56, +190 ± 69 µl, respectively, P = 0.007). This 3-groups classification allowed predicting 44% of the 2 weeks increase in end-diastolic volume, and additional 34% were predicted by heart rate at 48 h. The acipimox-enhanced FDG gated-PET technique provides efficient characterization and prediction of early remodeling in the rat infarct model.


Subject(s)
Fluorodeoxyglucose F18 , Hypolipidemic Agents , Myocardial Infarction/diagnostic imaging , Myocardium/pathology , Positron-Emission Tomography , Pyrazines , Radiopharmaceuticals , Ventricular Remodeling , Animals , Diastole , Disease Models, Animal , Male , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Predictive Value of Tests , Rats , Rats, Wistar , Time Factors , Ventricular Function, Left
20.
BMC Med Genomics ; 4: 83, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-22136666

ABSTRACT

BACKGROUND: Prediction of left ventricular (LV) remodeling after acute myocardial infarction (MI) is clinically important and would benefit from the discovery of new biomarkers. METHODS: Blood samples were obtained upon admission in patients with acute ST-elevation MI who underwent primary percutaneous coronary intervention. Messenger RNA was extracted from whole blood cells. LV function was evaluated by echocardiography at 4-months. RESULTS: In a test cohort of 32 MI patients, integrated analysis of microarrays with a network of protein-protein interactions identified subgroups of genes which predicted LV dysfunction (ejection fraction ≤ 40%) with areas under the receiver operating characteristic curve (AUC) above 0.80. Candidate genes included transforming growth factor beta receptor 1 (TGFBR1). In a validation cohort of 115 MI patients, TGBFR1 was up-regulated in patients with LV dysfunction (P < 0.001) and was associated with LV function at 4-months (P = 0.003). TGFBR1 predicted LV function with an AUC of 0.72, while peak levels of troponin T (TnT) provided an AUC of 0.64. Adding TGFBR1 to the prediction of TnT resulted in a net reclassification index of 8.2%. When added to a mixed clinical model including age, gender and time to reperfusion, TGFBR1 reclassified 17.7% of misclassified patients. TGFB1, the ligand of TGFBR1, was also up-regulated in patients with LV dysfunction (P = 0.004), was associated with LV function (P = 0.006), and provided an AUC of 0.66. In the rat MI model induced by permanent coronary ligation, the TGFB1-TGFBR1 axis was activated in the heart and correlated with the extent of remodeling at 2 months. CONCLUSIONS: We identified TGFBR1 as a new candidate prognostic biomarker after acute MI.


Subject(s)
Myocardial Infarction/diagnosis , Myocardial Infarction/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Acute Disease , Adult , Aged , Aged, 80 and over , Angiogenic Proteins/genetics , Biomarkers/metabolism , Blood Cells/metabolism , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Multigene Family/genetics , Myocardial Infarction/blood , Myocardial Infarction/physiopathology , Myocardium/metabolism , Prognosis , Protein Interaction Maps , Protein Serine-Threonine Kinases/genetics , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/genetics , Reproducibility of Results , Transforming Growth Factor beta1/metabolism , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...