Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cell Death Dis ; 10(8): 621, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31413277

ABSTRACT

Adult hearts respond to increased workload such as prolonged stress or injury, by undergoing hypertrophic growth. During this process, the early adaptive responses are important for maintaining cardiac output whereas at later stages, pathological responses such as cardiomyocyte apoptosis and fibrosis cause adverse remodelling, that can progress to heart failure. Yet the factors that control transition from adaptive responses to pathological remodelling in the heart are not well understood. Here we describe the POU4F2/Brn-3b transcription factor (TF) as a novel regulator of adaptive hypertrophic responses in adult hearts since Brn-3b mRNA and protein are increased in angiotensin-II (AngII) treated mouse hearts with concomitant hypertrophic changes [increased heart weight:body weight (HW:BW) ratio]. These effects occur specifically in cardiomyocytes because Brn-3b expression is increased in AngII-treated primary cultures of neonatal rat ventricular myocytes (NRVM) or foetal heart-derived H9c2 cells, which undergo characteristic sarcomeric re-organisation seen in hypertrophic myocytes and express hypertrophic markers, ANP/ßMHC. The Brn-3b promoter is activated by known hypertrophic signalling pathways e.g. p42/p44 mitogen-activated protein kinase (MAPK/ERK1/2) or calcineurin (via NFAT). Brn-3b target genes, e.g. cyclin D1, GLUT4 and Bax, are increased at different stages following AngII treatment, supporting distinct roles in cardiac responses to stress. Furthermore, hearts from male Brn-3b KO mutant mice display contractile dysfunction at baseline but also attenuated hypertrophic responses to AngII treatment. Hearts from AngII-treated male Brn-3b KO mice develop further contractile dysfunction linked to extensive fibrosis/remodelling. Moreover, known Brn-3b target genes, e.g. GLUT4, are reduced in AngII-treated Brn-3b KO hearts, suggesting that Brn-3b and its target genes are important in driving adaptive hypertrophic responses in stressed heart.


Subject(s)
Cardiovascular Diseases/genetics , Hypertrophy/genetics , Myocardium/metabolism , Transcription Factor Brn-3B/genetics , Angiotensin II/pharmacology , Animals , Animals, Newborn , Apoptosis , Calcineurin/pharmacology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cyclin D1/genetics , Gene Expression Regulation/genetics , Glucose Transporter Type 4/genetics , Humans , Hypertrophy/metabolism , Hypertrophy/pathology , Mice , Mice, Knockout , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Primary Cell Culture , RNA, Small Interfering/genetics , Rats , bcl-2-Associated X Protein/antagonists & inhibitors , bcl-2-Associated X Protein/genetics
2.
Oncotarget ; 9(95): 36770-36779, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30613365

ABSTRACT

The development of drug resistance following treatment with chemotherapeutic agents such as cisplatin (cis) and paclitaxel (pax) contributes to high morbidity and mortality in ovarian cancers. However, the molecular mechanisms underlying such changes are not well understood. In this study, we demonstrate that the Brn-3b transcription factor was increased in different ovarian cancer cells including SKOV3 and A2780 following treatment with cis and pax. Furthermore, sustained increases in Brn-3b were associated with survival in drug resistant cells and correlated with elevated HSP27 expression. In contrast, targeting Brn-3b for reduction using short interfering RNA (siRNA) also resulted in attenuated HSP27 expression. Importantly, blocking Brn-3b expression with siRNA in SKOV3 cells was associated with reduced cell numbers at baseline but also increased cell death after further treatment, indicating sensitization of cells. Similar results were obtained in the metastatic IP1 cell line derived from ascites of mice bearing SKOV3 tumours. These findings suggest that increased Brn-3b may confer resistance to chemotherapeutic drugs in ovarian cancer cells by regulating key target genes such as HSP27 and that targeting Brn-3b may provide a novel mechanism for treatment of drug resistant ovarian cancers.

3.
Cell Death Dis ; 8(6): e2861, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28594399

ABSTRACT

Congenital heart defects contribute to embryonic or neonatal lethality but due to the complexity of cardiac development, the molecular changes associated with such defects are not fully understood. Here, we report that transcription factors (TFs) Brn-3a (POU4F1) and Brn-3b (POU4F2) are important for normal cardiac development. Brn-3a directly represses Brn-3b promoter in cardiomyocytes and consequently Brn-3a knockout (KO) mutant hearts express increased Brn-3b mRNA during mid-gestation, which is linked to hyperplastic growth associated with elevated cyclin D1, a known Brn-3b target gene. However, during late gestation, Brn-3b can cooperate with p53 to enhance transcription of pro-apoptotic genes e.g. Bax, thereby increasing apoptosis and contribute to morphological defects such as non-compaction, ventricular wall/septal thinning and increased crypts/fissures, which may cause lethality of Brn-3a KO mutants soon after birth. Despite this, early embryonic lethality in e9.5 double KO (Brn-3a-/- : Brn-3b-/-) mutants indicate essential functions with partial redundancy during early embryogenesis. High conservation between mammals and zebrafish (ZF) Brn-3b (87%) or Brn-3a (76%) facilitated use of ZF embryos to study potential roles in developing heart. Double morphant embryos targeted with morpholino oligonucleotides to both TFs develop significant cardiac defects (looping abnormalities and valve defects) suggesting essential roles for Brn-3a and Brn-3b in developing hearts.


Subject(s)
Gene Expression Regulation, Developmental/physiology , Heart/embryology , Homeodomain Proteins/biosynthesis , Transcription Factor Brn-3A/biosynthesis , Transcription Factor Brn-3B/biosynthesis , Animals , Heart Defects, Congenital/embryology , Heart Defects, Congenital/genetics , Homeodomain Proteins/genetics , Mice , Mice, Knockout , Transcription Factor Brn-3A/genetics , Transcription Factor Brn-3B/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...