Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 289: 112522, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33848878

ABSTRACT

COVID-19 pandemic has caused profound impacts on human life and the environment including freshwater ecosystems globally. Despite the various impacts, the pandemic has improved the quality of the environment and thereby creating an opportunity to restore the degraded ecosystems. This study presents the imprints of COVID-19 lockdown on the surface water quality and chemical characteristics of the urban-based Bagmati River Basin (BRB), Nepal. A total of 50 water samples were collected from 25 sites of BRB during the monsoon season, in 2019 and 2020. The water temperature, pH, electrical conductivity, total dissolved solids, dissolved oxygen (DO), and turbidity were measured in-situ, while the major ions, total hardness, biological oxygen demand (BOD), and chemical oxygen demand (COD) were analyzed in the laboratory. The results revealed neutral to mildly alkaline waters with relatively moderate mineralization and dissolved chemical constituents in the BRB. The average ionic abundance followed the order of Ca2+ > Na+ > Mg2+ > K+ > NH4+ for cations and HCO3-> Cl- > SO42- > NO3- > PO43- for anions. Comparing to the pre-lockdown, the level of DO was increased by 1.5 times, whereas the BOD and COD were decreased by 1.5 and 1.9 times, respectively during the post-lockdown indicating the improvement of the quality water which was also supported by the results of multivariate statistical analyses. This study confirms that the remarkable recovery of degraded aquatic ecosystems is possible with limiting anthropic activities.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Communicable Disease Control , Ecosystem , Environmental Monitoring , Humans , Nepal , Pandemics , Rivers , SARS-CoV-2 , Water Pollutants, Chemical/analysis , Water Quality
2.
J Hazard Mater ; 389: 121913, 2020 05 05.
Article in English | MEDLINE | ID: mdl-31879101

ABSTRACT

A comprehensive investigation was conducted on trace elements (TEs) in the glacier-fed Gandaki River Basin, Central Himalayas Nepal. A total of 93 water samples were collected from 31 locations in pre-monsoon, monsoon and post-monsoon seasons in 2016 to evaluate the concentrations of TEs. Multivariate statistical techniques such as analysis of variance, cluster analysis, principal component analysis, and correlation analysis were applied to investigate the spatiotemporal variations and identify the major sources of the TEs. The results classified most of the TEs into two groups. Group 1 including Cs, Li, Ni, Rb, Sc, Sr, Tl, U and V were from geogenic sources, while Group 2 including Cd, Co, Cr, Cu, Pb, Ti, Y and Zn were impacted by anthropogenic activities. Group 1 showed lower concentrations in the lower-middle and downstream segments with higher precipitation and the highest concentrations during pre-monsoon. In contrast, Group 2 demonstrated higher concentrations in the densely populated lower segments with more agriculture and industries, and the highest concentrations during the post-monsoon season. Comparing to the drinking water limits suggested that special attention should be paid to the elevated concentrations of Zn and As. The results of the study provide a basic guideline for future environmental protection in the Himalaya.

SELECTION OF CITATIONS
SEARCH DETAIL
...