Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 401: 123436, 2021 01 05.
Article in English | MEDLINE | ID: mdl-32763716

ABSTRACT

Safe disposal of nuclear waste in a geologic repository will rely on natural geologic features and engineered barriers to greatly retard the movement of radionuclides from the repository. Clay minerals including bentonite are effective in retarding the migration of many radionuclides, but are ineffective for anionic radionuclides, of which pertechnetate is of particular concern owing to its relatively long half-life and the lack of natural isotopes that dilute it. Activated carbon is proposed as an additive material for reducing pertechnetate mobility in the nearfield. Activated carbon materials of different origins quantitatively sorb pertechnetate from aqueous solution under oxidizing conditions during the first day of contact, and sequential extraction showed that 73 % of this technetium is in the strongly bound fraction. X-ray photoelectron spectra (XPS) and extended X-ray absorption fine structure (EXAFS) spectra both demonstrated that no reduction of technetium occurred in the studied systems. The interaction of technetium with a composite material consisting of bentonite and activated carbon was studied at the first time. Effective technetium sorption was shown, with distribution coefficients (Kd) up to 740 cm3. g-1.

2.
J Phys Chem Lett ; 11(12): 4859-4865, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32515198

ABSTRACT

Supercapacitors based on carbon nanomaterials are attracting much attention because of their high capacitance enabled by large specific surface area. The introduction of heteroatoms such as N or O enhances the specific capacitance of these materials. However, the mechanisms that lead to the increase in the specific capacitance are not yet well-studied. In this Letter, we demonstrate an effective method for modification of the surface of carbon nanowalls (CNWs) using DC plasma in atmospheres of O2, N2, and their mixture. Processing in the plasma leads to the incorporation of ∼4 atom % nitrogen and ∼10 atom % oxygen atoms. Electrochemical measurements reveal that CNWs functionalized with oxygen groups are characterized by higher capacitance. The specific capacitance for samples with oxygen reaches 8.9 F cm-3 at a scan rate of 20 mV s-1. In contrast, the nitrogen-doped samples demonstrate a specific capacitance of 4.4 F cm-3 at the same scan rate. The mechanism of heteroatom incorporation into the carbon lattice is explained using density functional theory calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...