Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1121838, 2023.
Article in English | MEDLINE | ID: mdl-37064146

ABSTRACT

Identifying the precise topography of cancer for targeted biopsy in colonoscopic examination is a challenge in current diagnostic practice. For the first time we demonstrate the use of compression optical coherence elastography (C-OCE) technology as a new functional OCT modality for differentiating between cancerous and non-cancerous tissues in colon and detecting their morphological features on the basis of measurement of tissue elastic properties. The method uses pre-determined stiffness values (Young's modulus) to distinguish between different morphological structures of normal (mucosa and submucosa), benign tumor (adenoma) and malignant tumor tissue (including cancer cells, gland-like structures, cribriform gland-like structures, stromal fibers, extracellular mucin). After analyzing in excess of fifty tissue samples, a threshold stiffness value of 520 kPa was suggested above which areas of colorectal cancer were detected invariably. A high Pearson correlation (r =0.98; p <0.05), and a negligible bias (0.22) by good agreement of the segmentation results of C-OCE and histological (reference standard) images was demonstrated, indicating the efficiency of C-OCE to identify the precise localization of colorectal cancer and the possibility to perform targeted biopsy. Furthermore, we demonstrated the ability of C-OCE to differentiate morphological subtypes of colorectal cancer - low-grade and high-grade colorectal adenocarcinomas, mucinous adenocarcinoma, and cribriform patterns. The obtained ex vivo results highlight prospects of C-OCE for high-level colon malignancy detection. The future endoscopic use of C-OCE will allow targeted biopsy sampling and simultaneous rapid analysis of the heterogeneous morphology of colon tumors.

3.
Breast Cancer Res ; 25(1): 12, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717842

ABSTRACT

BACKGROUND: Breast cancer neoadjuvant chemotherapy (NACT) allows for assessing tumor sensitivity to systemic treatment, planning adjuvant treatment and follow-up. However, a sufficiently large number of patients fail to achieve the desired level of pathological tumor response while optimal early response assessment methods have not been established now. In our study, we simultaneously assessed the early chemotherapy-induced changes in the tumor volume by ultrasound (US), the tumor oxygenation by diffuse optical spectroscopy imaging (DOSI), and the state of the tumor vascular bed by Doppler US to elaborate the predictive criteria of breast tumor response to treatment. METHODS: A total of 133 patients with a confirmed diagnosis of invasive breast cancer stage II to III admitted to NACT following definitive breast surgery were enrolled, of those 103 were included in the final analysis. Tumor oxygenation by DOSI, tumor volume by US, and tumor vascularization by Doppler US were determined before the first and second cycle of NACT. After NACT completion, patients underwent surgery followed by pathological examination and assessment of the pathological tumor response. On the basis of these, data regression predictive models were created. RESULTS: We observed changes in all three parameters 3 weeks after the start of the treatment. However, a high predictive potential for early assessment of tumor sensitivity to NACT demonstrated only the level of oxygenation, ΔStO2, (ρ = 0.802, p ≤ 0.01). The regression model predicts the tumor response with a high probability of a correct conclusion (89.3%). The "Tumor volume" model and the "Vascularization index" model did not accurately predict the absence of a pathological tumor response to treatment (60.9% and 58.7%, respectively), while predicting a positive response to treatment was relatively better (78.9% and 75.4%, respectively). CONCLUSIONS: Diffuse optical spectroscopy imaging appeared to be a robust tool for early predicting breast cancer response to chemotherapy. It may help identify patients who need additional molecular genetic study of the tumor in order to find the source of resistance to treatment, as well as to correct the treatment regimen.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoadjuvant Therapy/methods , Mastectomy , Chemotherapy, Adjuvant
4.
Microsc Microanal ; 24(1): 38-48, 2018 02.
Article in English | MEDLINE | ID: mdl-29485022

ABSTRACT

Radiation therapy, widely used in the treatment of a variety of malignancies in the pelvic area, is associated with inevitable damage to the surrounding healthy tissues. We have applied atomic force microscopy (AFM) to track the early damaging effects of ionizing radiation on the collagen structures in the experimental animals' bladder and rectum. The first signs of the low-dose radiation (2 Gy) effect were detected by AFM as early as 1 week postirradiation. The observed changes were consistent with initial radiation destruction of the protein matrix. The alterations in the collagen fibers' packing 1 month postirradiation were indicative of the onset of fibrotic processes. The destructive effect of higher radiation doses was probed 1 day posttreatment. The severity of the radiation damage was proportional to the dose, from relatively minor changes in the collagen packing at 8 Gy to the growing collagen matrix destruction at higher doses and complete three-dimensional collagen network restructuring towards fibrotic-type architecture at the dose of 22 Gy. The AFM study appeared superior to the optical microscopy-based studies in its sensitivity to early radiation damage of tissues, providing valuable additional information on the onset and development of the collagen matrix destruction and remodeling.

5.
Int J Mol Sci ; 18(12)2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29182594

ABSTRACT

The necessary precondition for efficient boron neutron capture therapy (BNCT) is control over the content of isotope 10B in the tumor and normal tissues. In the case of boron-containing porphyrins, the fluorescent part of molecule can be used for quantitative assessment of the boron content. Study Objective: We performed a study of the biodistribution of the chlorin e6-Cobalt bis(dicarbollide) conjugate in carcinoma-bearing Balb/c mice using ex vivo fluorescence imaging, and developed a mathematical model describing boron accumulation and release based on the obtained experimental data. Materials and Methods: The study was performed on Balb/c tumor-bearing mice (CT-26 tumor model). A solution of the chlorin e6-Cobalt bis(dicarbollide) conjugate (CCDC) was injected into the blood at a dose of 10 mg/kg of the animal's weight. Analysis of the fluorescence signal intensity was performed at several time points by spectrofluorimetry in blood and by laser scanning microscopy in muscle, liver, and tumor tissues. The boron content in the same samples was determined by mass spectroscopy with inductively coupled plasma. Results: Analysis of a linear approximation between the fluorescence intensity and boron content in the tissues demonstrated a satisfactory value of approximation reliability with a Spearman's rank correlation coefficient of r = 0.938, p < 0.01. The dynamics of the boron concentration change in various organs, calculated on the basis of the fluorescence intensity, enabled the development of a model describing the accumulation of the studied compound and its distribution in tissues. The obtained results reveal a high level of correspondence between the model and experimental data.


Subject(s)
Cobalt/chemistry , Porphyrins/chemistry , Animals , Boron/chemistry , Boron Neutron Capture Therapy , Carcinoma/therapy , Cell Line, Tumor , Female , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Photochemotherapy/methods , Photosensitizing Agents
6.
J Biophotonics ; 3(12): 743-51, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20715133

ABSTRACT

The capabilities of diffuse optical spectroscopy for noninvasive assessing of oxygen status in experimental tumors have been demonstrated. Specific features of the distribution of total hemoglobin, oxygenated hemoglobin, deoxygenated hemoglobin, and blood-oxygen saturation were shown on two tumor models having different histological structure and functional characteristics. The results obtained by the optical technique were verified by immunohistochemical study of tissue samples marked with exogenous marker of hypoxia--pimonidazole.


Subject(s)
Biomarkers, Tumor/analysis , Disease Models, Animal , Hypoxia/metabolism , Immunohistochemistry/methods , Medical Oncology/methods , Spectrum Analysis/methods , Animals , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Diffusion , Female , Hemoglobins/metabolism , Hypoxia/pathology , Lymph Nodes/metabolism , Lymph Nodes/pathology , Male , Nitroimidazoles , Optical Devices , Oxygen/metabolism , Radiation-Sensitizing Agents , Rats , Spectrum Analysis/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...