Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Reprod ; 38(3): 359-370, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36708005

ABSTRACT

STUDY QUESTION: What is the impact of cancer or hematological disorders on germ cells in pediatric male patients? SUMMARY ANSWER: Spermatogonial quantity is reduced in testes of prepubertal boys diagnosed with cancer or severe hematological disorder compared to healthy controls and this reduction is disease and age dependent: patients with central nervous system cancer (CNS tumors) and hematological disorders, as well as boys <7 years are the most affected. WHAT IS KNOWN ALREADY: Fertility preservation in pediatric male patients is considered based on the gonadotoxicity of selected treatments. Although treatment effects on germ cells have been extensively investigated, limited data are available on the effect of the disease on the prepubertal male gonad. Of the few studies investigating the effects of cancer or hematologic disorders on testicular function and germ cell quantity in prepuberty, the results are inconsistent. However, recent studies suggested impairments before the initiation of known gonadotoxic therapy. Understanding which diseases and at what age affect the germ cell pool in pediatric patients before treatment is critical to optimize strategies and counseling for fertility preservation. STUDY DESIGN, SIZE, DURATION: This multicenter retrospective cohort study included 101 boys aged <14 years with extra-cerebral cancer (solid tumors), CNS tumors, leukemia/lymphoma (blood cancer), or non-malignant hematological disorders, who were admitted for a fertility preservation programme between 2002 and 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS: In addition to clinical data, we analyzed measurements of testicular volume and performed histological staining on testicular biopsies obtained before treatment, at cryopreservation, to evaluate number of spermatogonia per tubular cross-section, tubular fertility index, and the most advanced germ cell type prior to chemo-/radiotherapy. The controls were data simulations with summary statistics from original studies reporting healthy prepubertal boys' testes characteristics. MAIN RESULTS AND THE ROLE OF CHANCE: Prepubertal patients with childhood cancer or hematological disorders were more likely to have significantly reduced spermatogonial quantity compared to healthy controls (48.5% versus 31.0% prevalence, respectively). The prevalence of patients with reduced spermatogonial quantity was highest in the CNS tumor (56.7%) and the hematological disorder (55.6%) groups, including patients with hydroxyurea pre-treated sickle cell disease (58.3%) and patients not exposed to hydroxyurea (50%). Disease also adversely impacted spermatogonial distribution and differentiation. Irrespective of disease, we observed the highest spermatogonial quantity reduction in patients <7 years of age. LIMITATIONS, REASONS FOR CAUTION: For ethical reasons, we could not collect spermatogonial quantity data in healthy prepubertal boys as controls and thus deployed statistical simulation on data from literature. Also, our results should be interpreted considering low patient numbers per (sub)group. WIDER IMPLICATIONS OF THE FINDINGS: Cancers, especially CNS tumors, and severe hematological disorders can affect spermatogonial quantity in prepubertal boys before treatment. Consequently, these patients may have a higher risk of depleted spermatogonia following therapies, resulting in persistent infertility. Therefore, patient counseling prior to disease treatment and timing of fertility preservation should not only be based on treatment regimes, but also on diagnoses and age. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by Marie Curie Initial Training Network (ITN) (EU-FP7-PEOPLE-2013-ITN) funded by European Commision grant no. 603568; ZonMW Translational Adult stem cell research (TAS) grant no. 116003002. No competing interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Fertility Preservation , Hematologic Diseases , Neoplasms , Adult , Child , Humans , Male , Spermatogonia , Fertility Preservation/methods , Retrospective Studies , Hydroxyurea , Testis , Cryopreservation
2.
J Reprod Immunol ; 119: 98-106, 2017 02.
Article in English | MEDLINE | ID: mdl-27613663

ABSTRACT

The release of extracellular vesicles (EV) by the syncytiotrophoblast (STB) may be an important mechanism by which the placenta signals to the mother. STB derived EV (STBEV) are comprised predominantly of exosomes (50-150nm) and microvesicles (100-1000nm) that contain bioactive mediators such as proteins, nucleic acids and lipids. They, along with larger syncytial nuclear aggregates are released by the STB into the maternal circulation throughout gestation in normal pregnancy where they appear to have an immunoregulatory role, inhibiting T cell and NK cell responses. In pre-eclampsia (PE) STBEV are released in significantly increased numbers and have pro-inflammatory, anti-angiogenic and procoagulant activity, implicating them in the maternal systemic inflammation, endothelial dysfunction and activation of the clotting system which typifies the disorder. Research has focused on understanding the biological significance of STBEV by measuring their size and repertoire of molecules carried and how they differ in normal pregnancy and PE, using techniques such as Nanoparticle Tracking Analysis, flow cytometry and mass spectrometry. We have also found alterations in STBEV surface glycans associated with PE. The goal is to better understand the role STBEV play in normal pregnancy and PE and whether they are potential biomarkers of placental pathology and therapeutic targets in PE.


Subject(s)
Extracellular Vesicles/metabolism , Inflammation Mediators/metabolism , Inflammation/immunology , Killer Cells, Natural/immunology , Pre-Eclampsia/immunology , T-Lymphocytes/immunology , Trophoblasts/metabolism , Blood Coagulation , Female , Humans , Immunomodulation , Mass Spectrometry , Nanoparticles , Placental Circulation , Pre-Eclampsia/therapy , Pregnancy , Trophoblasts/pathology
3.
Fertil Steril ; 106(7): 1652-1657.e2, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27717555

ABSTRACT

OBJECTIVE: To collect published data on spermatogonial quantity in the testes of healthy children and calculate the reference values of spermatogonial quantities throughout prepuberty. DESIGN: Systematic literature search in PubMed and EMBASE focusing on the number of spermatogonia per transverse tubular cross section (S/T) and spermatogonial density per cubic centimeter (cm3) of testicular volume (S/V) throughout prepuberty. SETTING: None. PATIENT(S): None. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Polynomial meta-regression analyses of S/T and S/V of healthy boys from the ages of 0 to 14 years. RESULT(S): We found six papers describing original quantitative data on S/T and S/V of healthy boys (total n = 334 and 62, respectively) that were suitable for meta-analysis. Polynomial meta-regression analyses of S/T and S/V demonstrated a clear pattern of spermatogonial quantity throughout prepubertal life. This consisted of a decline during the first 3 years of life, a gradual increase until the ages of 6 to 7 years, a plateau until the age of 11 years, and a sharp incline reaching pubertal numbers at 13 to 14 years of age. The association between S/T and S/V allowed us to perform S/T to S/V extrapolation, creating reference S/V (rS/V) values throughout prepubertal life from a cohort of 372 boys. CONCLUSION(S): Spermatogonial quantity varies during testicular development toward puberty. The values found in this study may serve as a baseline clinical reference to study the impact of diseases and adverse effects of gonadotoxic treatments on spermatogonial quantity in prepubertal testes. Spermatogonial quantity reference values may also help to evaluate the quality of testicular biopsy samples acquired for fertility preservation of prepubertal boys.


Subject(s)
Puberty , Sperm Count/standards , Spermatogonia/cytology , Testis/cytology , Adolescent , Age Factors , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Male , Reference Values , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...