Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 13(42): 12374-12381, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36382290

ABSTRACT

The transport of amino acids across lipid membranes is vital for the proper functioning of every living cell. In spite of that, examples of synthetic transporters that can facilitate amino acid transport are rare. This is mainly because at physiological conditions amino acids predominantly exist as highly polar zwitterions and proper shielding of their charged termini, which is necessary for fast diffusion across lipophilic membranes, requires complex and synthetically challenging heteroditopic receptors. Here we report the first simple monotopic anion receptor, dithioamide 1, that efficiently transports a variety of natural amino acids across lipid bilayers at physiological pH. Mechanistic studies revealed that the receptor rapidly transports deprotonated amino acids, even though at pH 7.4 these forms account for less than 3% of the total amino acid concentration. We also describe a new fluorescent assay for the selective measurement of the transport of deprotonated amino acids into liposomes. The new assay allowed us to study the pH-dependence of amino acid transport and elucidate the mechanism of transport by 1, as well as to explain its exceptionally high activity. With the newly developed assay we screened also four other representative examples of monotopic anion transporters, of which two showed promising activity. Our results imply that heteroditopic receptors are not necessary for achieving high amino acid transport activities and that many of the previously reported anionophores might be active amino acid transporters. Based on these findings, we propose a new strategy for the development of artificial amino acid transporters with improved properties.

2.
Org Biomol Chem ; 20(38): 7658-7663, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36134504

ABSTRACT

Synthetic ionophores able to transport bicarbonate and chloride anions across lipid bilayers are appealing for their wide range of potential biological applications. We have studied the bicarbonate and chloride transport by carbazoles with two amido/thioamido groups using a bicarbonate-sensitive europium(III) probe in liposomes and found a highly remarkable transporter concentration dependence. This can be explained by a combination of two distinct transport mechanisms: HCO3-/Cl- exchange and a combination of unassisted CO2 diffusion and HCl transport, of which the respective contributions were quantified. The compounds studied were found to be highly potent HCl transporters. Based on the mechanistic insights on anion transport, we have tested the antimicrobial activity of these compounds and found a good correlation with their ion transport properties and a high activity against Gram-positive bacteria.


Subject(s)
Anti-Infective Agents , Bicarbonates , Biological Transport , Carbazoles , Carbon Dioxide , Chlorides , Europium , Hydrogen-Ion Concentration , Ion Transport , Ionophores/pharmacology , Lipid Bilayers , Liposomes
3.
Molecules ; 26(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071969

ABSTRACT

Owing to their strong carbazole chromophore and fluorophore, as well as to their powerful and convergent hydrogen bond donors, 1,8-diaminocarbazoles are amongst the most attractive and synthetically versatile building blocks for the construction of anion receptors, sensors, and transporters. Aiming to develop carbazole-based colorimetric anion sensors, herein we describe the synthesis of 1,8-diaminocarbazoles substituted with strongly electron-withdrawing substituents, i.e., 3,6-dicyano and 3,6-dinitro. Both of these precursors were subsequently converted into model diamide receptors. Anion binding studies revealed that the new receptors exhibited significantly enhanced anion affinities, but also significantly increased acidities. We also found that rear substitution of 1,8-diamidocarbazole with two nitro groups shifted its absorption spectrum into the visible region and converted the receptor into a colorimetric anion sensor. The new sensor displayed vivid color and fluorescence changes upon addition of basic anions in wet dimethyl sulfoxide, but it was poorly selective; because of its enhanced acidity, the dominant receptor-anion interaction for most anions was proton transfer and, accordingly, similar changes in color were observed for all basic anions. The highly acidic and strongly binding receptors developed in this study may be applicable in organocatalysis or in pH-switchable anion transport through lipophilic membranes.

4.
Front Chem ; 9: 690035, 2021.
Article in English | MEDLINE | ID: mdl-34095089

ABSTRACT

Artificial chloride transporters have been intensely investigated in view of their potential medicinal applications. Recently, we have established 1,8-diamidocarbazoles as a versatile platform for the development of active chloride carriers. In the present contribution, we investigate the influence of various electron-withdrawing substituents in positions 3 and 6 of the carbazole core on the chloride transport activity of these anionophores. Using lucigenin assay and large unilamellar vesicles as models, the 3,6-dicyano- and 3,6-dinitro- substituted receptors were found to be highly active and perfectly deliverable chloride transporters, with EC50,270s value as low as 22 nM for the Cl-/NO3 - exchange. Mechanistic studies revealed that diamidocarbazoles form 1:1 complexes with chloride in lipid bilayers and facilitate chloride/nitrate exchange by carrier mechanism. Furthermore, owing to its increased acidity, the 3,6-dinitro- substituted receptor acts as a pH-switchable transporter, with physiologically relevant apparent pKa of 6.4.

5.
Chem Commun (Camb) ; 56(36): 4910-4913, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32238998

ABSTRACT

A simple di(thioamido)carbazole 1 serves as a potent multispecific transporter for various biologically relevant oxyanions, such as drugs, metabolites and model organic phosphate. The transport kinetics of a wide range of oxyanions can be easily quantified by a modified lucigenin assay in both large and giant unilamellar vesicles.


Subject(s)
Carbazoles/metabolism , Lipid Bilayers/metabolism , Oxygen/metabolism , Thioamides/metabolism , Unilamellar Liposomes/metabolism , Biological Transport , Carbazoles/chemistry , Kinetics , Lipid Bilayers/chemistry , Molecular Structure , Oxygen/chemistry , Thioamides/chemistry , Unilamellar Liposomes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...