Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 24(3)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35327826

ABSTRACT

The central focus of this paper is upon the alleviation of the boundary problem when the probability density function has a bounded support. Mixtures of beta densities have led to different methods of density estimation for data assumed to have compact support. Among these methods, we mention Bernstein polynomials which leads to an improvement of edge properties for the density function estimator. In this paper, we set forward a shrinkage method using the Bernstein polynomial and a finite Gaussian mixture model to construct a semi-parametric density estimator, which improves the approximation at the edges. Some asymptotic properties of the proposed approach are investigated, such as its probability convergence and its asymptotic normality. In order to evaluate the performance of the proposed estimator, a simulation study and some real data sets were carried out.

2.
Arab J Sci Eng ; 46(1): 93-102, 2021.
Article in English | MEDLINE | ID: mdl-32837814

ABSTRACT

2019-nCoV is a virulent virus belonging to the coronavirus family that caused the new pneumonia (COVID-19) which has spread internationally very rapidly and has become pandemic. In this research paper, we set forward a statistical model called SIR-Poisson that predicts the evolution and the global spread of infectious diseases. The proposed SIR-Poisson model is able to predict the range of the infected cases in a future period. More precisely, it is used to infer the transmission of the COVID-19 in the three Maghreb Central countries (Tunisia, Algeria, and Morocco). Using the SIR-Poisson model and based on daily reported disease data, since its emergence until end April 2020, we attempted to predict the future disease period over 60 days. The estimated average number of contacts by an infected individual with others was around 2 for Tunisia and 3 for Algeria and Morocco. Relying on inferred scenarios, although the pandemic situation would tend to decline, it has not ended. From this perspective, the risk of COVID-19 spreading still exists after the deconfinement act. It is necessary, therefore, to carry on the containment until the estimated infected number achieves 0.

3.
J Comput Biol ; 16(9): 1227-40, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19772434

ABSTRACT

We summarize here the Implicit statistical inference approach as an alternative to Bayesian networks and we give an effective iterative algorithm analogous to the Expectation Maximization algorithm to infer signal transduction network when the set of data is incomplete. We proved the convergence of our algorithm that we called Implicit algorithm and we apply it to simulated data for a simplified signal transduction pathway of the EGFR protein.


Subject(s)
Algorithms , Signal Transduction , Artificial Intelligence , Computer Simulation , ErbB Receptors/metabolism , Humans , Models, Biological
4.
J Theor Biol ; 253(4): 717-24, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18541271

ABSTRACT

We introduce here the concept of Implicit networks which provide, like Bayesian networks, a graphical modelling framework that encodes the joint probability distribution for a set of random variables within a directed acyclic graph. We show that Implicit networks, when used in conjunction with appropriate statistical techniques, are very attractive for their ability to understand and analyze biological data. Particularly, we consider here the use of Implicit networks for causal inference in biomolecular pathways. In such pathways, an Implicit network encodes dependencies among variables (proteins, genes), can be trained to learn causal relationships (regulation, interaction) between them and then used to predict the biological response given the status of some key proteins or genes in the network. We show that Implicit networks offer efficient methodologies for learning from observations without prior knowledge and thus provide a good alternative to classical inference in Bayesian networks when priors are missing. We illustrate our approach by an application to simulated data for a simplified signal transduction pathway of the epidermal growth factor receptor (EGFR) protein.


Subject(s)
Computer Simulation , Models, Statistical , Neural Networks, Computer , Signal Transduction/physiology , Animals , Computational Biology/methods , Epidermal Growth Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...