Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 264: 110492, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32250913

ABSTRACT

Organic matter (OM) is a vital component for a healthy soil, its lack arise a major problem for farmers who need to use commercialized fertilizers with high costs. Considering circular economy approach and for increasing OM availability, water soaked date palm waste was co-composted with goat manure in aerated windrow to produce a soil organic amendment. The OM biodegradation was mainly controlled based on biological parameters and spectroscopic techniques. The results showed a rapid temperature increase during the first week, and a relatively long compost maturity phase. The OM content reduction was of 36% and C/N ratio shifted from 60 to 20 at the process end. During the composting process, the specific ultraviolet absorbance SUVA254, SUVA269 and the SUVA280 values increase confirmed the OM and hydrophilic compounds degradation, as well as substrate content oxidation into aromatic compounds. The Fourier Transform Infrared Spectroscopy (FTIR) analyses of the different samples collected during the process exhibited both OM biodegradation and mineralization. The 3 absorption ratios 1650/2845, 1525/2925 and 2920/1640 confirmed an aromaticity increase by aromatic structures biosynthesis, such as humic-like and fulvic-like substances, with the decomposition/transformation of aliphatic components, polysaccharides, and alcohols. Fluorescence excitation-emission matrix (FEEM) spectroscopy coupled with parallel factor analysis (PARAFAC) evidenced the dissolved organic matter (DOM) humification. A four-component model was obtained, i.e. humic-like component (S1, S2 and S3) and fulvic-like component (S4). The produced compost didn't exhibit any phytotoxicity evidenced by cress seed germination index exceeding 80%. All the analyses confirmed the good quality of the compost issued from mixed date palm waste and goat manure.


Subject(s)
Composting , Phoeniceae , Fertilizers , Humic Substances , Manure , Soil
2.
Environ Technol ; 34(5-8): 787-97, 2013.
Article in English | MEDLINE | ID: mdl-23837330

ABSTRACT

Compost stability assessment within different particle size fractions was studied. Humic acids (HAs) were extracted from two kinds of co-composts prepared using evaporated olive mill wastewater (OMSW) or solid waste from olive oil extraction (OC) and poultry manure (PM). The elemental composition, Fourier-transform infrared spectroscopy (FTIR) and 13C-NMR (nuclear magnetic resonance) analysis and molecular weight distribution were investigated to assess the composted organic matter stability in different fractions. In both composts, organic matter content was higher in the > 2 mm fractions than in the < 2 mm fractions, because of fractions' richness in hardly biodegradable compounds. Spectroscopic analysis revealed that OMSW compost fraction < 2 mm and OC compost 2-4 mm fraction were rich in aromatic compounds and oxygenated groups but poor in aliphatic structure. Moreover, the HA distribution reflected a high stabilized compost < 2 mm fraction, especially from evaporated effluent known as phytotoxic. However, the 4-6 mm fraction included high aliphatic compounds besides aromatic structures and did not exhibit any phytotoxicity, confirming compost fraction maturity. However, the low C/N ratio, the high OMSW compost mineral nutritive elements and the high aromatic C rate reflected highly stabilized products. Consequently, the performance of both prepared organic fertilizers for agriculture use contested the previous negative effect ascribed to olive mill wastewater.


Subject(s)
Food-Processing Industry , Humic Substances/analysis , Olea/chemistry , Soil/chemistry , Industrial Waste , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...