Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
Protein Expr Purif ; 23(1): 142-50, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11570856

ABSTRACT

Attachment of a hexa-His tag is a common strategy in recombinant protein production. The use of such a tag greatly simplifies the purification of the protein from the complex mixture of other proteins in the media or cell extract. We describe the production of two recombinant nonglycosylated human serum transferrins (hTF-NG), containing a factor Xa cleavage site and a hexa-His tag at their carboxyl-terminal ends. One of the constructs comprises the entire coding region for hTF (residues 1-679), while the other lacks the final three carboxyl-terminal amino acids. After insertion of the His-tagged hTFs into the pNUT vector, transfection into baby hamster kidney (BHK) cells, and selection with methotrexate, the secreted recombinant proteins were isolated from the tissue culture medium. Average maximum expression levels of the His-tagged hTFs were about 40 mg/L compared to an average maximum of 50 mg/L for hTF-NG. The first step of purification involved an anion exchange column. The second step utilized a Poros metal chelate column preloaded with copper from which the His-tagged sample was eluted with a linear imidazole gradient. The His-tagged hTFs were characterized and compared to both recombinant hTF-NG and glycosylated hTF from human serum. The identity of each of the His-tagged hTFs constructs was verified by electrospray mass spectroscopy. In summary, the His-tagged hTF constructs simplify the purification of these metal-binding proteins with minimal effects on many of their physical properties. The His-tagged hTFs share many features common to hTF, including reversible iron binding, reactivity with a monoclonal antibody, and presence as a monomer in solution.


Subject(s)
Cloning, Molecular/methods , Histidine , Transferrin/biosynthesis , Affinity Labels , Animals , Antibodies, Monoclonal/metabolism , Cell Line , Chromatography , Cricetinae , Glycosylation , Humans , Iron/metabolism , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Spectrum Analysis , Transfection , Transferrin/isolation & purification , Transferrin/metabolism
2.
Biochemistry ; 40(39): 11670-5, 2001 Oct 02.
Article in English | MEDLINE | ID: mdl-11570867

ABSTRACT

Proteins of the transferrin (Tf) family play a central role in iron homeostasis in vertebrates. In vertebrate Tfs, the four iron-binding ligands, 1 Asp, 2 Tyr, and 1 His, are invariant in both lobes of these bilobal proteins. In contrast, there are striking variations in the Tfs that have been characterized from insect species; in three of them, sequence changes in the C-lobe binding site render it nonfunctional, and in all of them the His ligand in the N-lobe site is changed to Gln. Surprisingly, mutagenesis of the histidine ligand, His249, to glutamine in the N-lobe half-molecule of human Tf (hTf/2N) shows that iron binding is destabilized and suggests that Gln249 does not bind to iron. We have determined the crystal structure of the H249Q mutant of hTf/2N and refined it at 1.85 A resolution (R = 0.221, R(free) = 0.246). The structure reveals that Gln249 does coordinate to iron, albeit with a lengthened Fe-Oepsilon1 bond of 2.34 A. In every other respect, the protein structure is unchanged from wild-type. Examination of insect Tf sequences shows that the K206.K296 dilysine pair, which aids iron release from the N-lobes of vertebrate Tfs, is not present in the insect proteins. We conclude that substitution of Gln for His does destabilize iron binding, but in the insect Tfs this is compensated by the loss of the dilysine interaction. The combination of a His ligand with the dilysine pair in vertebrate Tfs may have been a later evolutionary development that gives more sophisticated pH-mediated control of iron release from the N-lobe of transferrins.


Subject(s)
Iron/metabolism , Models, Molecular , Mutation , Transferrin/metabolism , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Crystallography, X-Ray , Insecta , Ligands , Molecular Sequence Data , Protein Binding , Protein Conformation , Sequence Homology, Amino Acid , Transferrin/chemistry , Transferrin/genetics
4.
Biochemistry ; 40(6): 1616-23, 2001 Feb 13.
Article in English | MEDLINE | ID: mdl-11327820

ABSTRACT

Human transferrin (Tf) is responsible for the binding and transport of iron in the bloodstream of vertebrates. Delivery of this bound iron to cells occurs by a process of receptor-mediated endocytosis during which Tf releases its iron at the reduced endosomal pH of approximately 5.6. Iron release from Tf involves a large conformational change in which the two domains that enclose the binding site in each lobe move apart. We have examined the role of two lysines, Lys206 and Lys296, that form a hydrogen-bonded pair close to the N-lobe binding site of human Tf and have been proposed to form a pH-sensitive trigger for iron release. We report high-resolution crystal structures for the K206A and K296A mutants of the N-lobe half-molecule of Tf, hTf/2N, and quantitative iron release data on these mutants and the double mutant K206A/K296A. The refined crystal structures (for K206A, R = 19.6% and R(free) = 23.7%; for K296A, R= 21.2% and R(free) = 29.5%) reveal a highly conserved hydrogen bonding network in the dilysine pair region that appears to be maintained even when individual hydrogen bonding groups change. The iron release data show that the mutants retain iron to a pH 1 unit lower than the pH limit of wild type hTf/2N, and release iron much more slowly as a result of the loss of the dilysine interaction. Added chloride ions are shown to accelerate iron release close to the pH at which iron is naturally lost and the closed structure becomes destabilized, and to retard it at higher pH.


Subject(s)
Amino Acid Substitution/genetics , Dipeptides/metabolism , Iron/metabolism , Lysine/genetics , Peptide Fragments/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Transferrin/chemistry , Alanine/genetics , Animals , Binding Sites/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cations/chemistry , Cations/metabolism , Cell Line , Conserved Sequence , Cricetinae , Crystallography, X-Ray , Dipeptides/genetics , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Iron/chemistry , Iron-Binding Proteins , Kinetics , Lysine/metabolism , Mutagenesis, Site-Directed , Peptide Fragments/genetics , Peptide Fragments/metabolism , Transferrin/genetics , Transferrin/metabolism , Transferrin-Binding Proteins
5.
Biochem J ; 354(Pt 2): 423-9, 2001 Mar 01.
Article in English | MEDLINE | ID: mdl-11171122

ABSTRACT

Human serum transferrin N-lobe (hTF/2N) contains three conserved tryptophan residues, Trp(8), Trp(128) and Trp(264), located in three different environments. The present report addresses the different contributions of the three tryptophan residues to the UV-visible, fluorescence and NMR spectra of hTF/2N and the effect of the mutations at each tryptophan residue on the iron-binding properties of the protein. Trp(8) resides in a hydrophobic box containing a cluster of three phenylalanine side chains and is H bonded through the indole N to an adjacent water cluster lying between two beta-sheets containing Trp(8) and Lys(296) respectively. The fluorescence of Trp(8) may be quenched by the benzene rings. The apparent increase in the rate of iron release from the Trp(8)-->Tyr mutant could be due to the interference of the mutation with the H-bond linkage resulting in an effect on the second shell network. The partial quenching in the fluorescence of Trp(128) results from the nearby His(119) residue. Difference-fluorescence spectra reveal that any protein containing Trp(128) shows a blue shift upon binding metal ion, and the NMR signal of Trp(128) broadens out and disappears upon the binding of paramagnetic metals to the protein. These data imply that Trp(128) is a major fluorescent and NMR reporter group for metal binding, and possibly for cleft closure in hTF/2N. Trp(264) is located on the surface of the protein and does not connect to any functional residues. This explains the facts that Trp(264) is the major contributor to both the absorbance and fluorescence spectra, has a strong NMR signal and the mutation at Trp(264) has little effect on the iron-binding and release behaviours of the protein.


Subject(s)
Metals/metabolism , Transferrin/metabolism , Tryptophan , Amino Acid Substitution , Animals , Cells, Cultured , Cobalt , Cricetinae , Histidine , Humans , Iron/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Mutagenesis, Site-Directed , Point Mutation , Protein Conformation , Protein Subunits , Spectrometry, Fluorescence , Spectrophotometry, Atomic , Spectrophotometry, Ultraviolet , Structure-Activity Relationship , Transferrin/genetics
6.
J Biol Chem ; 276(12): 8829-35, 2001 Mar 23.
Article in English | MEDLINE | ID: mdl-11110794

ABSTRACT

Several bismuth compounds are currently used as antiulcer drugs, but their mechanism of action is not well established. Proteins are thought to be target sites. In this work we establish that the competitive binding of Bi(3+) to the blood serum proteins albumin and transferrin, as isolated proteins and in blood plasma, can be monitored via observation of (1)H and (13)C NMR resonances of isotopically labeled [epsilon-(13)C]Met transferrin. We show that Met(132) in the I132M recombinant N-lobe transferrin mutant is a sensitive indicator of N-lobe metal binding. Bi(3+) binds to the specific Fe(3+) sites of transferrin and the observed shifts of Met resonances suggest that Bi(3+) induces similar conformational changes in the N-lobe of transferrin in aqueous solution and plasma. Bi(3+) binding to albumin is nonspecific and Cys(34) is not a major binding site, which is surprising because Bi(3+) has a high affinity for thiolate sulfur. This illustrates that the potential target sites for metals (in this case Bi(3+)) in proteins depend not only on their presence but also on their accessibility. Bi(3+) binds to transferrin in preference to albumin both in aqueous solution and in blood plasma.


Subject(s)
Albumins/metabolism , Bismuth/metabolism , Transferrin/metabolism , Animals , Binding, Competitive , Bismuth/blood , Cell Line , Cricetinae , Humans , Iron/metabolism , Male , Nuclear Magnetic Resonance, Biomolecular , Solutions , Water
7.
Yeast ; 16(14): 1287-98, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11015726

ABSTRACT

This paper reviews our current knowledge of yeast alcohol acyltransferases. Much of this information has been gathered over the past 10 years through the application of powerful yeast molecular biology techniques. Evidence from gene disruption and expression analysis of members of the alcohol acyltransferase (ATF) gene family indicates that different ester synthases are involved in the synthesis of esters during alcoholic fermentation. The natural physiological rationale behind these enzyme activities remains unclear. However, it is believed that these enzymes may be involved in very different functions, including cellular fatty acid homeostasis and detoxification mechanisms. Insights into the regulation of yeast ester synthesis by oxygen and unsaturated fatty acids have contributed to our understanding of the general mechanisms of gene regulation. In particular, control mechanisms that underpin the oxygen-mediated regulation of ATF1 gene transcription appear to be closely linked to those involved in the regulation of fatty acid metabolism. Data pertaining to the regulation of ATF1 gene transcription have been integrated into a working model for future research.


Subject(s)
Acetyltransferases/genetics , Acetyltransferases/metabolism , Esters/metabolism , Proteins , Saccharomyces cerevisiae Proteins , Yeasts/enzymology , Fatty Acid Desaturases/genetics , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/pharmacology , Gene Expression Regulation, Fungal , Genes, Fungal , Oxygen/pharmacology , Oxygen/physiology , Stearoyl-CoA Desaturase , Transcription, Genetic , Yeasts/genetics
8.
Biochem J ; 350 Pt 3: 909-15, 2000 Sep 15.
Article in English | MEDLINE | ID: mdl-10970808

ABSTRACT

The major function of human transferrin is to deliver iron from the bloodstream to actively dividing cells. Upon iron release, the protein changes its conformation from 'closed' to 'open'. Extensive studies in vitro indicate that iron release from transferrin is very complex and involves many factors, including pH, the chelator used, an anion effect, temperature, receptor binding and intra-lobe interactions. Our earlier work [He, Mason and Woodworth (1997) Biochem. J. 328, 439-445] using the isolated transferrin N-lobe (recombinant N-lobe of human transferrin comprising residues 1-337; hTF/2N) has shown that anions and pH modulate iron release from hTF/2N in an interdependent manner: chloride retards iron release at neutral pH, but accelerates the reaction at acidic pH. The present study supports this idea and further details the nature of the dual effect of chloride: the anion effect on iron release is closely related to the strength of anion binding to the apoprotein. The negative effect seems to originate from competition between chloride and the chelator for an anion-binding site(s) near the metal centre. With decreasing pH, the strength of anion binding to hTF/2N increases linearly, decreasing the contribution of competition with the chelator. In the meantime, the 'open' or 'loose' conformation of hTF/2N, induced by the protonation of critical residues such as the Lys-206/Lys-296 pair at low pH, enables chloride to enter the cleft and bind to exposed side chains, thereby promoting cleft opening and synergistically allowing removal of iron by the chelator, leading to a positive anion effect. Disabling one or more of the primary anion-binding residues, namely Arg-124, Lys-206 and Lys-296, substantially decreases the anion-binding ability of the resulting mutant proteins. In these cases, the competition for the remaining binding residue(s) is increased, leading to a negative chloride effect or, at most, a very small positive effect, even at low pH.


Subject(s)
Anions/metabolism , Iron/metabolism , Transferrin/metabolism , Humans , Kinetics
9.
Protein Sci ; 9(1): 49-52, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10739246

ABSTRACT

The X-ray crystallographic structures of two mutants (K206Q and H207E) of the N-lobe of human transferrin (hTF/2N) have been determined to high resolution (1.8 and 2.0 A, respectively). Both mutant proteins bind iron with greater affinity than native hTF/2N. The structures of the K206Q and H207E mutants show interactions (both H-bonding and electrostatic) that stabilize the interaction of Lys296 in the closed conformation, thereby stabilizing the iron bound forms.


Subject(s)
Iron/chemistry , Transferrin/chemistry , Amino Acid Substitution , Crystallography, X-Ray , Humans , Models, Molecular , Point Mutation , Protein Binding
10.
Biochemistry ; 39(6): 1205-10, 2000 Feb 15.
Article in English | MEDLINE | ID: mdl-10684597

ABSTRACT

Human serum transferrin is an iron-binding and -transport protein which carries iron from the blood stream into various cells. Iron is held in two deep clefts located in the N- and C-lobes by coordinating to four amino acid ligands, Asp 63, Tyr 95, Tyr 188, and His 249 (N-lobe numbering), and to two oxygens from carbonate. We have previously reported the effect on the iron-binding properties of the N-lobe following mutation of the ligands Asp 63, Tyr 95, and Tyr 188. Here we report the profound functional changes which result from mutating His 249 to Ala, Glu, or Gln. The results are consistent with studies done in lactoferrin which showed that the histidine ligand is critical for the stability of the iron-binding site [H. Nicholson, B. F. Anderson, T. Bland, S. C. Shewry, J. W. Tweedie, and E. N. Baker (1997) Biochemistry 36, 341-346]. In the mutant H249A, the histidine ligand is disabled, resulting in a dramatic reduction in the kinetic stability of the protein toward loss of iron. The H249E mutant releases iron three times faster than wild-type protein but shows significant changes in both EPR spectra and the binding of anion. This appears to be the net effect of the metal ligand substitution from a neutral histidine residue to a negative glutamate residue and the disruption of the "dilysine trigger" [MacGillivray, R. T. A., Bewley, M. C., Smith, C. A., He, Q.-Y., Mason, A. B., Woodworth, R. C., and Baker, E. N. (2000) Biochemistry 39, 1211-1216]. In the H249Q mutant, Gln 249 appears not to directly contact the iron, given the similarity in the spectroscopic properties and the lability of iron release of this mutant to the H249A mutant. Further evidence for this idea is provided by the preference of both the H249A and H249Q mutants for nitrilotriacetate rather than carbonate in binding iron, probably because NTA is able to provide a third ligation partner. An intermediate species has been identified during the kinetic interconversion between the NTA and carbonate complexes of the H249A mutant. Thus, mutation of the His 249 residue does not abolish iron binding to the transferrin N-lobe but leads to the appearance of novel iron-binding sites of varying structure and stability.


Subject(s)
Histidine/genetics , Iron/metabolism , Mutagenesis, Site-Directed , Peptide Fragments/genetics , Transferrin/genetics , Alanine/genetics , Alanine/metabolism , Animals , Antiporters/genetics , Antiporters/metabolism , Cell Line , Cricetinae , Electron Spin Resonance Spectroscopy , Histidine/metabolism , Humans , Iron/chemistry , Kinetics , Ligands , Nitrilotriacetic Acid/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding/genetics , Spectrophotometry, Ultraviolet , Transferrin/chemistry , Transferrin/metabolism
11.
Biochemistry ; 39(6): 1211-6, 2000 Feb 15.
Article in English | MEDLINE | ID: mdl-10684598

ABSTRACT

Serum transferrin is the major iron transport protein in humans. Its function depends on its ability to bind iron with very high affinity, yet to release this bound iron at the lower intracellular pH. Possible explanations for the release of iron from transferrin at low pH include protonation of a histidine ligand and the existence of a pH-sensitive "trigger" involving a hydrogen-bonded pair of lysines in the N-lobe of transferrin. We have determined the crystal structure of the His249Glu mutant of the N-lobe half-molecule of human transferrin and compared its iron-binding properties with those of the wild-type protein and other mutants. The crystal structure, determined at 2.4 A resolution (R-factor 19.8%, R(free) 29.4%), shows that Glu 249 is directly bound to iron, in place of the His ligand, and that a local movement of Lys 296 has broken the dilysine interaction. Despite the loss of this potentially pH-sensitive interaction, the H249E mutant is only slightly more acid-stable than wild-type and releases iron slightly faster. We conclude that the loss of the dilysine interaction does make the protein more acid stable but that this is counterbalanced by the replacement of a neutral ligand (His) by a negatively charged one (Glu), thus disrupting the electroneutrality of the binding site.


Subject(s)
Dipeptides/metabolism , Glutamic Acid/genetics , Histidine/genetics , Iron/metabolism , Mutagenesis, Site-Directed , Transferrin/genetics , Binding Sites/genetics , Crystallography, X-Ray , Dipeptides/chemistry , Glutamic Acid/metabolism , Histidine/metabolism , Humans , Protein Binding/genetics , Protein Folding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Transferrin/chemistry , Transferrin/metabolism
12.
Biochem J ; 344 Pt 3: 881-7, 1999 Dec 15.
Article in English | MEDLINE | ID: mdl-10585877

ABSTRACT

The N-lobe of human serum transferrin (hTF/2N) and single point mutants in which each of the five methionine residues was individually mutated have been produced in a mammalian tissue-culture expression system. Since the five methionine residues are well distributed in the transferrin N-lobe, (13)C NMR of the [epsilon-(13)C]methionine-labelled proteins has been used to monitor conformational changes of the protein during metal binding. All five methionine residues have been assigned [Beatty, Cox, Frenkiel, Tam, Mason, MacGillivray, Sadler and Woodworth (1996) Biochemistry 35, 7635-7642]. The tentative two-dimensional NMR assignment for two of the five methionine residues, namely Met(26) and Met(109), has been corrected. A series of NMR spectra for the complexes of (13)C-Met-labelled hTF/2N with six different metal ions, Fe(III), Cu(II), Cr(III), Co(III), Ga(III) and In(III), demonstrate that the conformational change of the protein upon metal binding can be observed by means of the changes in the NMR chemical shifts associated with certain methionine residues, regardless of whether diamagnetic or paramagnetic metals are used. Changing any of the methionine residues should have minimal effects on transferrin function, since structural analysis shows that none of these residues contacts functional amino acids or has any obvious role in iron uptake or release. In fact, UV-visible spectra show little perturbation of the electronic spectra of any of the mutants. Nevertheless, the M109L mutant (Met(109)-->Leu) releases iron at half the rate of the wild-type N-lobe, and chloride shows a significantly greater retarding effect on the rate of iron release from all five mutants. All the methionine mutants (especially in the apo form) show a poor solubility in Hepes buffer lacking anions such as bicarbonate. These findings imply a more general effect of anion binding to surface residues than previously realized.


Subject(s)
Chlorides/pharmacology , Metals/pharmacology , Methionine/genetics , Protein Conformation , Transferrin/chemistry , 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/pharmacology , Humans , Iron/metabolism , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Mutation , Protein Binding , Spectrophotometry , Transferrin/genetics
13.
J Biol Inorg Chem ; 4(5): 621-31, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10550692

ABSTRACT

Reactions between various apo and metal-bound forms of human serum transferrin (80 kDa) and the recombinant N-lobe (40 kDa) with [Pt(en)Cl(2)] or cis-[PtCl(2)(NH(3))(2)] have been investigated in solution via observation of [(1)H,(15)N] NMR resonances of the Pt complexes, [(1)H,(13)C] resonances of the eCH(3) groups of the protein methionine residues, and by chromatographic analysis of single-site methionine mutants. For the whole protein, the preferred Pt binding site appears to be Met256. Additional binding occurs at the other surface-exposed methionine (Met499), which is platinated at a slower rate than Met256. In contrast, binding of similar Pt compounds to the N-lobe of the protein occurs at Met313, rather than Met256. Met313 is buried in the interlobe contact region of intact transferrin. After loss of one chloride ligand from Pt and binding to methionine sulfur of the N-lobe, chelate-ring closure appears to occur with binding to a deprotonated backbone amide nitrogen, and the loss of the other chloride ligand. Such chelate-ring closure was not observed during reactions of the whole protein, even after several days.


Subject(s)
Platinum/metabolism , Transferrin/metabolism , Antineoplastic Agents/metabolism , Binding Sites , Carbon Isotopes , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Methionine/chemistry , Methionine/genetics , Models, Molecular , Nitrogen Isotopes , Organoplatinum Compounds/metabolism , Transferrin/genetics
14.
Biochemistry ; 38(30): 9704-11, 1999 Jul 27.
Article in English | MEDLINE | ID: mdl-10423249

ABSTRACT

The unique structural feature of the dilysine (Lys206-Lys296) pair in the transferrin N-lobe (hTF/2N) has been postulated to serve a special function in the release of iron from the protein. These two lysines, which are located in opposite domains, hydrogen bond to each other in the iron-containing hTF/2N at neutral pH but are far apart in the apo-form of the protein. It has been proposed that charge repulsion resulting from the protonation of the dilysines at lower pH may be the trigger to open the cleft and facilitate iron release. The fact that the dilysine pair is positively charged and resides in a location close to the metal-binding center has also led to the suggestion that the dilysine pair is an anion-binding site for chelators. The present report provides comprehensive evidence to confirm that the dilysine pair plays this dual role in modulating release of iron. When either of the lysines is mutated to glutamate or glutamine or when both are mutated to glutamate, release of iron is much slower compared to the wild-type protein. This is due to the fact that the driving force for cleft opening is absent in the mutants or is converted to a lock-like interaction (in the case of the K206E and K296E mutants). Direct titration of the apo-proteins with anions as well as anion-dependent iron release studies show that the dilysine pair is part of an active anion-binding site which exists with the Lys296-Tyr188 interaction as a core. At this site, Lys296 serves as the primary anion-binding residue and Tyr188 is the main reporter for electronic spectral change, with smaller contributions from Lys206, Tyr85, and Tyr95. In iron-loaded hTF/2N, anion binding becomes invisible as monitored by UV-vis difference spectra since the spectral reporters Tyr188 and Tyr95 are bound to iron. Our data strongly support the hypothesis that the apo-hTF/2N exists in equilibrium between the open and closed conformations, because only in the closed form is Lys296 in direct contact with Tyr188. The current findings bring together observations, ideas, and experimental data from a large number of previous studies and shed further light on the detailed mechanism of iron release from the transferrin N-lobe. In iron-containing hTF/2N, Lys296 may still function as a target to introduce an anion (or a chelator) near to the iron-binding center. When the pH is lowered, the protonation of carbonate (synergistic anion for metal binding) and then the dilysine pair form the driving force to loosen the cleft, exposing iron; the nearby anion (or chelator) then binds to the iron and releases it from the protein.


Subject(s)
Ferric Compounds/chemistry , Lysine/chemistry , Peptide Fragments/chemistry , Transferrin/chemistry , Animals , Anions/chemistry , Anions/metabolism , Binding Sites/genetics , Cell Line , Chlorides/chemistry , Cricetinae , Ferric Compounds/metabolism , Humans , Hydrogen-Ion Concentration , Kinetics , Lysine/genetics , Models, Molecular , Peptide Fragments/genetics , Peptide Fragments/metabolism , Spectrophotometry, Ultraviolet , Sulfates/chemistry , Transferrin/genetics , Transferrin/metabolism
15.
Biochemistry ; 38(8): 2535-41, 1999 Feb 23.
Article in English | MEDLINE | ID: mdl-10029548

ABSTRACT

The ferric form of the N-lobe of human serum transferrin (Fe(III)-hTF/2N) has been expressed at high levels in Pichia pastoris. The Fe(III)-hTF/2N was crystallized in the space group P41212, and X-ray crystallography was used to solve the structure of the recombinant protein at 2.5 A resolution. This represents only the second P. pastoris-derived protein structure determined to date, and allows the comparison of the structures of recombinant Fe(III)-hTF/2N expressed in P. pastoris and mammalian cells with serum-derived transferrin. The polypeptide folding pattern is essentially identical in all of the three proteins. Mass spectroscopic analyses of P. pastoris- hTF/2N and proteolytically derived fragments revealed glycosylation of Ser-32 with a single hexose. This represents the first localization of an O-linked glycan in a P. pastoris-derived protein. Because of its distance from the iron-binding site, glycosylation of Ser-32 should not affect the iron-binding properties of hTF/2N expressed in P. pastoris, making this an excellent expression system for the production of hTF/2N.


Subject(s)
Peptide Fragments/chemistry , Pichia/genetics , Protein Folding , Recombinant Proteins/chemistry , Serine/metabolism , Transferrin/chemistry , Animals , Cell Line , Cricetinae , Crystallization , Crystallography, X-Ray , Ferric Compounds/chemistry , Glycosylation , Humans , Kidney/cytology , Mass Spectrometry , Models, Molecular , Peptide Fragments/genetics , Peptide Fragments/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Serine/genetics , Transferrin/genetics , Transferrin/metabolism
16.
Biochem J ; 337 ( Pt 1): 105-11, 1999 Jan 01.
Article in English | MEDLINE | ID: mdl-9854031

ABSTRACT

Interactions of recombinant N-lobe of human serum transferrin (hTF/2N) with Bi3+, a metal ion widely used in medicine, have been investigated by both UV and NMR spectroscopy. The bicarbonate-independent stability constant for Bi3+ binding (K*) to hTF/2N was determined to be log K* 18.9+/-0.2 in 5 mM bicarbonate/10 mM Hepes buffer at 310 K, pH7.4. The presence of Fe3+ in the C-lobe of intact hTF perturbed Bi3+ binding to the N-lobe, whereas binding of Bi3+ to the C-lobe was unaffected by the presence of Fe3+ in the N-lobe. Reactions of Bi3+ (as bismuth nitrilotriacetate or ranitidine bismuth citrate) with hTF/2N in solutions containing 10 mM bicarbonate induced specific changes to high-field 1H-NMR peaks. The 1H co-ordination shifts induced by Bi3+ were similar to those induced by Fe3+ and Ga3+, suggesting that Bi3+ binding causes similar structural changes to those induced by hTF/2N. 13C-NMR data showed that carbonate binds to hTF/2N concomitantly with Bi3+.


Subject(s)
Bismuth/chemistry , Transferrin/chemistry , Binding, Competitive , Humans , Magnetic Resonance Spectroscopy , Protein Conformation
17.
Biochemistry ; 37(40): 13978-86, 1998 Oct 06.
Article in English | MEDLINE | ID: mdl-9760232

ABSTRACT

Serum transferrin binds ferric ions in the bloodstream and transports them to cells, where they are released in a process involving receptor-mediated endocytosis. Iron release is believed to be pH dependent and is coupled with a large conformational change. To help define the steps in iron release, we have determined the three-dimensional structure of the iron-free (apo) form of the recombinant N-lobe half-molecule of human serum transferrin (ApoTfN) by X-ray crystallography. Two crystal forms were obtained, form 1 with four molecules in the asymmetric unit and form 2 with two molecules in the asymmetric unit. The structures of both forms were determined by molecular replacement and were refined at 2.2 and 3.2 A resolution, respectively. Final R-factors were 0.203 (free R = 0. 292) for form 1 and 0.217 (free R = 0.312) for form 2. All six copies of the ApoTfN structure are essentially identical. Comparison with the holo form (FeTfN) shows that a large rigid-body domain movement of 63 degrees has occurred in ApoTfN, to give an open binding cleft. The extent of domain opening is the same as in the N-lobe of human lactoferrin, showing that it depends on internal constraints that are conserved in both proteins, and that it is unaffected by the presence or absence of the C-lobe. Although the conformational change is primarily a rigid-body motion, several local adjustments occur. In particular, two iron ligands, Asp 63 and His 249, change conformation to form salt bridges, with Lys 296 and Glu 83, respectively, in the binding cleft of the apo protein. Both salt bridges would have to break for iron coordination to occur. Most importantly, the structure, determined at a pH (5.3) that is close to the pH of physiological iron release, indicates that protonation of His 249 is a key step in iron release.


Subject(s)
Peptide Fragments/chemistry , Protein Conformation , Transferrin/chemistry , Apoproteins/chemistry , Apoproteins/genetics , Binding Sites , Computer Simulation , Crystallization , Crystallography, X-Ray , Ferric Compounds/chemistry , Humans , Lactoferrin/chemistry , Ligands , Models, Molecular , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Transferrin/genetics , Transferrin/metabolism
18.
Biochim Biophys Acta ; 1372(2): 261-71, 1998 Jul 17.
Article in English | MEDLINE | ID: mdl-9675306

ABSTRACT

Constitutive, chromosomal expression of yeast pma1 deletion alleles in Saccharomyces cerevisiae yielded functional, truncated forms of the plasma membrane H+-ATPase which were independently capable of supporting wild type yeast growth rates. Deletion of 27 amino-terminal residues affected neither the enzyme's activity nor its responsiveness to changes in glucose metabolism. By contrast, removal of 18 carboxy-terminal amino acids produced an enzyme with a Vmax that was relatively insensitive to glucose-dependent metabolic status and with a Km that was significantly lower than that of the wild type enzyme. These effects were exaggerated when the amino- and carboxy-terminal deletions were combined in a bilaterally truncated H+-ATPase, suggesting that the amino terminus may have a subtle role in modulating ATPase activity. In pma1DeltaDelta cells cultured at pH 6, plasma membrane H+-ATPase levels were much lower than those in cells expressing a wild type ATPase. Increased expression levels could be achieved by growing the pma1DeltaDelta mutant at pH 3, a result that was at least partially due to a sustained, elevated transcription of pma1DeltaDelta mRNA. Our observations suggest that intracellular proton balance can be maintained by regulation of the activity and/or quantity of H+-ATPase in the plasma membrane.


Subject(s)
Gene Expression Regulation, Fungal , Proton-Translocating ATPases/chemistry , Proton-Translocating ATPases/genetics , Saccharomyces cerevisiae/enzymology , Amino Acid Sequence , Blotting, Western , Cell Membrane/enzymology , Gene Deletion , Glucose/metabolism , Hydrogen-Ion Concentration , Molecular Sequence Data , Mutagenesis , Peptide Fragments/metabolism , Phosphorylation , Proton-Translocating ATPases/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/growth & development , Structure-Activity Relationship
19.
Biochemistry ; 37(22): 7919-28, 1998 Jun 02.
Article in English | MEDLINE | ID: mdl-9609685

ABSTRACT

The N-lobe of human serum transferrin (hTF/2N) has been expressed in baby hamster kidney cells and crystallized in both orthorhombic (P212121) and tetragonal (P41212) space groups. Both crystal forms diffract to high resolution (1.6 and 1.8 A, respectively) and have been solved by molecular replacement. Subsequent refinement resulted in final models for the structure of hTF/2N that had crystallographic R-factors of 18.1 and 19.7% for the two crystal forms, respectively; these models represent the highest-resolution transferrin structures determined to date. The hTF/2N polypeptide has a folding pattern similar to those of other transferrins, including the presence of a deep cleft that contains the metal-binding site. In contrast to other transferrins, both crystal forms of hTF/2N display disorder at the iron-binding site; model building suggests that this disorder consists of alternative conformations of the synergistically bound carbonate anion, the side chain for Arg-124, and several solvent molecules. Subsequent refinement revealed that conformation A has an occupancy of 0.63-0. 65 and corresponds to the structure of the iron-binding site found in other transferrins. The alternative conformation B has an occupancy of 0.35-0.37; in this structure, the carbonate has rotated 30 degrees relative to the iron and the side chain for Arg-124 has moved to accommodate the new carbonate position. Several water molecules appear to stabilize the carbonate anion in the two conformations. These structures are consistent with the protonation of the carbonate and resulting partial removal of the anion from the metal; these events would occur prior to cleft opening and metal release.


Subject(s)
Iron/metabolism , Recombinant Proteins/chemistry , Transferrin/chemistry , Transferrin/genetics , Animals , Binding Sites/genetics , Cattle , Chickens , Crystallization , Crystallography, X-Ray , Ferric Compounds/chemistry , Humans , Iron/chemistry , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptides/chemistry , Peptides/genetics , Protein Conformation , Protein Folding , Rabbits , Recombinant Proteins/metabolism , Transferrin/metabolism
20.
J Biol Chem ; 273(27): 17018-24, 1998 Jul 03.
Article in English | MEDLINE | ID: mdl-9642266

ABSTRACT

The x-ray crystal structure of the N-lobe of human serum transferrin has shown that there is a hydrogen bond network, the so-called "second shell," around the transferrin iron binding site. Tyrosine at position 85 and glutamic acid at position 83 are two nonliganding residues in this network in the human serum transferrin N-lobe (hTF/2N). Mutation of each of these two amino acids has a profound effect on the metal binding properties of hTF/2N. When Tyr-85 is mutated to phenylalanine, iron release from the resulting mutant Y85F is much more facile than from the parent protein. Elimination of the hydrogen bond between Tyr-85 and Lys-296 appears to interfere with the "di-lysine (Lys-206-Lys-296) trigger," which affects the iron binding stability of the protein. Surprisingly, mutation of Glu-83 to alanine leads to the absence of one of the normal iron binding ligands; introduction of a monovalent anion is able to restore the normal first coordination sphere. The missing ligand appears to be His-249, as revealed by comparison of the metal binding behaviors of mutants H249Q and E83A and structural analysis. Glu-83 has a strong H bond linkage with His-249 in apo-hTF/2N, which helps to hold the His-249 in the proper position for iron binding. Disabling Glu-83 by mutation to an alanine seriously disturbs the H bond network, allowing His-249 to move away. A monovalent anion can help reestablish the normal network by providing a negative charge near the position of Glu-83 to reach charge balance, so that ligand His-249 is available again for iron binding.


Subject(s)
Glutamic Acid/metabolism , Mutation , Transferrin/metabolism , Tyrosine/metabolism , Base Sequence , Copper/metabolism , DNA Primers , Electron Spin Resonance Spectroscopy , Humans , Hydrogen Bonding , Iron/metabolism , Ligands , Protein Binding , Transferrin/chemistry , Transferrin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...