Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 13: 878294, 2022.
Article in English | MEDLINE | ID: mdl-35493808

ABSTRACT

Objective: To determine differences in long-term health and neurological outcomes following infantile spasms (IS) in patients treated with adrenocorticotropic hormone (ACTH) vs. prednisolone/prednisone (PRED). Methods: A retrospective, case-control study of patients with an International Classification of Diseases, Ninth Revision, Clinical Modifications (ICD-9) diagnosis of IS, identified over a 10-year period from a national administrative database, was conducted. IS patients treated with ACTH or PRED were determined and cohorts established by propensity score matching. Outcomes, defined by hospital discharge ICD codes, were followed for each patient for 5 years. Related ICD codes were analyzed jointly as phenotype codes (phecodes). Analysis of phecodes between cohorts was performed including phenome-wide association analysis. Results: A total of 5,955 IS patients were identified, and analyses were subsequently performed for 493 propensity score matched patients, each in the ACTH and PRED cohorts. Following Bonferroni correction, no phecode was more common in either cohort (p < 0.001). However, assuming an a priori difference, one phecode, abnormal findings on study of brain or nervous system (a category of abnormal neurodiagnostic tests), was more common in the PRED cohort (p <0.05), and was robust to sensitivity analysis. Variability in outcomes was noted between hospitals. Significance: We found that long-term outcomes for IS patients following ACTH or PRED treatment were very similar, including for both neurological and non-neurological outcomes. In the PRED-treated cohort there was a higher incidence of abnormal neurodiagnostic tests, assuming an a priori statistical model. Future studies can evaluate whether variability in outcomes between hospitals may be affected by post-treatment differences in care models.

2.
Obesity (Silver Spring) ; 21(1): 193-202, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23505186

ABSTRACT

OBJECTIVE: A genome-wide association study (GWAS) was recently completed in 1120 Pima Indians to identify loci that influence BMI. Among the top 100 signals were three variants that mapped within the lysophosphatidylglycerol acyltransferase 1 (LPGAT1) gene. LPGAT1 belongs to a large family of acyltransferases, which are involved in a variety of biological processes including pathways that regulate energy homeostasis and body weight. Therefore LPGAT1 was analyzed as a candidate gene for obesity in Pima Indians. DESIGN AND METHODS: Variants (n = 26) located within and adjacent to LPGAT1 including a novel 27bp deletion in the 5'-untranslated region identified by sequencing were genotyped in a population-based sample of 3,391 full-heritage Pima Indians living in the Gila River Indian Community. Replication of selected variants was assessed in a second sample of 3,327 mixed-heritage Native Americans from the same community. RESULTS: Variants with nominal associations with BMI in each of the two independent samples (tagged by rs112662024 and rs12058008) had associations of P = 1-4 × 10(-5) in the combined sample (n = 6718). A haplotype that includes the novel 27bp deletion, which does not occur in Caucasians, showed the strongest association with BMI in the full-heritage Pima Indians. In vitro functional studies provided suggestive evidence that this 27bp deletion may affect transcriptional or posttranscriptional regulation. Analysis of LPGAT1 cDNA from human preadipocytes identified an additional exon whose sequence could potentially serve as a mitochondrial targeting peptide. CONCLUSIONS: LPGAT1 is a novel gene that influences BMI in Native Americans.


Subject(s)
Acyltransferases/genetics , Adipose Tissue , Body Mass Index , Indians, North American/genetics , Obesity/genetics , Polymorphism, Single Nucleotide , Sequence Deletion , Body Composition/genetics , Body Weight , DNA, Complementary , Energy Metabolism , Exons , Gene Expression Regulation , Genetic Variation , Genome-Wide Association Study , Genotype , Humans , Introns , Mitochondria , Obesity/ethnology , Peptides/genetics , Signal Transduction
3.
Mol Genet Metab ; 104(4): 661-5, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21871827

ABSTRACT

Genetic variation in SIRT1 affects obesity-related phenotypes in several populations. The purpose of this study was to determine whether variation in SIRT1 affects susceptibility to obesity or type 2 diabetes in Pima Indians, a population with very high prevalence and incidence rates of these diseases. Genotypic data from single nucleotide polymorphisms (SNPs) identified by sequencing regions of SIRT1 combined with SNPs in/near SIRT1 from a prior genome-wide association study determined that 4 tag SNPs (rs7895833, rs10509291, rs7896005, and rs4746720) could capture information across this gene and its adjacent 5' region. The tag SNPs were genotyped in a population-based sample of 3501 Pima Indians (44% had diabetes, 58% female) for association with type 2 diabetes and BMI. Metabolic trait data and adipose biopsies were available on a subset of these subjects. Two tag SNPs, rs10509291 and rs7896005, were nominally associated with type 2 diabetes (P=0.01, OR=1.25 95%CI 1.05-1.48, and P=0.02, OR=1.17 95%CI 1.02-1.34, respectively; additive P values adjusted for age, sex, birth year, and family membership), but not BMI (adjusted P values 0.52 and 0.45, respectively). Among metabolically characterized subjects with normal glucose tolerance (N=243), those carrying the diabetes risk allele (T) for rs10509291 and (G) for rs7896005 had a reduced acute insulin response (AIR) to an intravenous glucose bolus (adjusted P=0.045 and 0.035, respectively). SIRT1 expression in adipose biopsies was negatively correlated with BMI (adjusted P=0.00001). We conclude that variation in SIRT1 is nominally associated with reduced AIR and increased risk for type 2 diabetes. SIRT1 expression in adipose is correlated with BMI, but it remains unknown whether this is a cause or consequence of obesity.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Insulin/metabolism , Sirtuin 1/genetics , Adult , Arizona , Female , Genetic Association Studies , Genotype , Humans , Indians, North American , Insulin Secretion , Linkage Disequilibrium , Longitudinal Studies , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Sequence Analysis, DNA , Sex Characteristics , Sex Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...